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MATERIALS AND METHODS 
 
PARTICIPANTS 
 
The five patients (all female, age range 24-45 years) participating in this study were undergoing 
surgical treatment for intractable epilepsy. Patients underwent a craniotomy for subdural 
implantation of an electrode grid and strip/depth electrodes followed by approximately one week 
of continuous monitoring of the electrocorticogram (ECoG). This monitoring was done in order 
to localize 1) the seizure focus for later resection, and 2) critical language and motor areas to be 
avoided during resective surgery. Grid placement was determined entirely by clinical necessity 
and was over the left frontotemporal region in all patients. See CLINICAL INFORMATION 
AND ADDITIONAL TESTS for patient details. 

Consenting patients participated in the research study during the week of ECoG 
monitoring.  The study protocol, approved by the UCSF and UC Berkeley Committees on 
Human Research, did not interfere with the ECoG recordings made for clinical purposes, and 
presented minimal risk to the participating subjects. Several sensory, motor, and cognitive tasks 
were performed by the subjects while the ongoing ECoG was recorded continuously. Tasks 
included passive listening to tones and phonemes while viewing a slideshow of landscape 
photographs; active listening to phonemes and words to detect targets amid distractors; picture 
naming; verb generation following auditory presentation of nouns; finger tapping; mouth 
movement and articulation; simultaneous multimodal (auditory-vibrotactile) stimulus 
presentation with unimodal target detection; auditory n-back task (phoneme stimuli); visual 
search task; visual silent reading task; facial emotion recognition task; and motor, auditory, and 
tactile imagery. Not all patients engaged in all tasks. 
 
ECOG RECORDING AND ELECTRODE LOCALIZATION 

  
 The electrode grids used to record ECoG for this study were 64-channel 8x8 arrays of 
platinum-iridium electrodes. In these arrays, each electrode is a 4 mm diameter disk with 2.3 mm 
exposed (thus 2.3 mm effective diameter), with 10 mm center-to-center spacing between 
adjacent electrodes. The recording system used for clinical monitoring does not permit 
monitoring of the high gamma band (80-150 Hz) due to low-pass filtering constraints. Therefore, 
the signal for the ECoG grid was split and sent to both the clinical system and a custom 
recording system. An electrode at the corner of the grid (see Fig. 1A) was used as reference 
potential for all other grid electrodes. The ECoG for patients 1-4 was amplified x10000 and 
analog filtered 0.01-250 Hz, while the ECoG for patient 5 was amplified x5000 and analog 
filtered 0.01-1000 Hz. Signals were digitized at 2003 Hz with 16 bit resolution. ECoG was 
recorded in separate blocks approximately 3-8 minutes in length, corresponding to the different 
behavioral tasks performed. 

Preoperative structural MR images were acquired on all patients with a 1.5T MRI 
scanner. CT scans were acquired postoperatively with subdural electrodes in place, clearly 
showing electrode positions with respect to skull geometry. Initial coregistrations were obtained 
between postoperative CT and preoperative MRI scans using SPM2 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm2). 3-D brain renderings were then generated 
from the MRI volume using MRIcro (http://www.sph.sc.edu/comd/rorden/mricro.html), and 
overlaid with the coregistered CT volume for an initial estimate of electrode positions. As 
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necessary, these coregistrations were manually corrected using electrode positions from 
intraoperative photographs as well as known electrode coordinates recorded with a StealthStation 
stereotactic system. 
 
ANALYSIS 
 
 All analyses were done using MATLAB. Prior to any further processing, channels with a 
low signal-to-noise ratio (SNR) were identified and deleted. Reasons for low SNR included 60 
Hz line interference, electromagnetic noise from hospital equipment, and poor contact with 
cortical surface. The raw time series, voltage histograms, and power spectra were used to 
identify noisy channels. Two investigators had to both agree before a noisy channel was dropped. 
This resulted in 2 channels dropped for patient 1, 3 channels dropped for patient 2, 12 channels 
dropped for patient 3, 4 channels dropped for patient 4, and no channels dropped for patient 5. 
The multi-channel ECoG was digitally re-referenced to a common average and high-pass filtered 
above 2.3 Hz with a symmetrical (phase true) finite impulse response (FIR) filter (~35 dB/octave 
roll-off) in order to minimize heartbeat artifact. Single channels of this minimally-processed 
ECoG are referred to as the ‘raw signal’ xRAW(t) in the following analyses.  

To create Fig. 1B (bottom), 2000 ms epochs centered on the time points identified as 
theta troughs were extracted from the raw signal and averaged to produce the theta-trough locked 
event-related potential (ERP). The time series indices corresponding to theta troughs were 
extracted from the theta (4-8 Hz) band analytic phase time series φTH(t). 

To create φTH(t), first the raw signal xRAW(t) from one recording block (6 minutes 7 
seconds, subject 1, electrode number 8, see Fig. 1A) was filtered from 4-8 Hz in order to create 
the real-valued band-pass filtered signal xTH(t). All filtering was done with a two-way least-
squares FIR filter (eegfilt.m from the EEGLAB toolbox, (1)). Second, the complex-valued 
analytic signal zTH(t) was created by applying the Hilbert Transform H (2), where zTH(t) = xTH(t) 
+ i H[xTH(t)]. Third, the phase at each time point was extracted from zTH(t) in order to create the 
analytic phase time series φTH(t). φTH(t) assumed values within (-π, π] radians, where π radians 
corresponds to a theta trough and 0 radians corresponds to a theta peak (cosine phase). Theta 
troughs were identified as all local minima of φTH(t) less than (-π + 0.01). This produced N=2223 
locking events. 

The ERP voltage at each time point was compared to a parametric reference distribution 
in order to determine (uncorrected) statistical significance (not shown in Fig. 1). This reference 
distribution was the best Gaussian fit of a set of voltage values produced by time-locked 
averaging the raw signal. Twenty five hundred sets of resampled or surrogate indices were used 
for locking. Each set of surrogate points was created by shifting the 2223 real theta trough 
indices forward or backward by the same randomly chosen integer lag, modulo the length of the 
raw time series. This preserves both the number of locking indices and the interval between 
sequential indices, assuring that the real and surrogate indices both have the same statistical 
properties.  Given that the filtered ECoG is not a perfect sinusoid, these surrogate indices are 
shifted away from the actual theta troughs and will be more uniformly distributed relative to the 
phase of the ECoG theta oscillation. The distribution of 2500 voltage values generated by 
locking and averaging the raw signal to the surrogate indices was then fit with a Gaussian. Note 
that while the histogram of raw ECoG voltage values is super-Gaussian (leptokurtic), the 
distribution of ERP voltage values approaches a Gaussian distribution by the Central Limit 
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Theorem. The actual ERP voltage at each time point was compared to this Gaussian distribution 
in order to acquire an uncorrected two-tail probability. 

To create Fig. 1B (top), a set of normalized instantaneous power time series {PBP(t)}NORM 
was constructed. First, the raw signal xRAW(t) was separated into bands with center frequencies 
ranging from 10 Hz to 224 Hz, in 2 Hz steps with 4 Hz bandwidths. This created a set of real-
valued band-pass filtered signals {xBP(t)}. Second, each xBP(t) was normalized by subtracting the 
temporal mean and dividing by the temporal standard deviation in order to create the set of 
normalized band-passed signals {xBP(t)}NORM. Normalization was done in order to facilitate 
comparison between different frequency bands. Third, the Hilbert Transform H was applied to 
each signal in {xBP(t)}NORM to create the set of normalized complex-valued analytic signals 
{zBP(t)}NORM. Fourth, the absolute value of each analytic signal was taken to produce the set of 
normalized analytic amplitude time series {ABP(t)}NORM. Fifth, each amplitude time series was 
squared (element-wise) to produce the set of normalized instantaneous power time series 
{PBP(t)}NORM. Sixth, 2 second epochs centered on the  2223 time points identified as theta 
troughs were extracted from {PBP(t)}NORM and averaged within each band in order to produce the 
theta-trough locked trace of mean instantaneous power across frequencies. Seventh, uncorrected 
p-values for each time point in each band were determined as above for the ERP. Eighth, a false 
discovery rate (FDR) correction with α = 0.001 was applied to the uncorrected p-values for each 
time point in each band (including the ERP) in order to correct for multiple comparisons (3). 

 To create Fig. 1C, high gamma amplitudes were extracted and binned as a function of 
theta phase. First, xRAW(t) for the same electrode as in Fig. 1B was extracted for each recording 
block of ECoG data. xRAW(t) was band-pass filtered from 80 to 150 Hz, the Hilbert Transform 
applied, the absolute value taken, and the results for all blocks concatenated in order to create the 
high gamma analytic amplitude time series AHG(t). Next, theta troughs were identified as above, 
with theta peaks defined as all local minima of (φTH(t) + π) which were less than (-π + 0.1). 
Finally, the values of AHG(t) occurring at points corresponding to a theta peak or trough were 
binned into 1 of 2 sets and each set fit with a gamma distribution (4). The confidence intervals 
generated during parameter estimation were used to determine significance (p<0.001). 

Fig.s 1D, 2, 3, and S4-8 make use of the modulation index M. This index takes advantage 
of the complex-valued signals produced by most frequency and time-frequency transforms. For 
example, define the real-valued signal xHG(t) to be the ECoG from one channel after band-pass 
filtering from 80 to 150 Hz (Fig. S1A). Applying the Hilbert Transform yHG = H(xHG) converts 
this real-valued signal into an analytic, complex-valued signal of the form zHG(t) =  xHG(t) + i 
yHG(t) = AHG(t) eiφ

HG
(t) , where AHG(t) is the high gamma analytic amplitude time series (also 

called the amplitude envelope) and φHG(t) is the high gamma analytic phase time series. 
Similarly, we can construct the analytic signal for the theta band: zTH(t) =  xTH(t) + i yTH(t) 
= ATH(t) eiφ

TH
(t) (Fig.s S1B-E).  

To determine the modulation index M, we first construct a composite complex-valued 
signal by combining the amplitude time series of one frequency with the phase time series of the 
other. There are two such possible composite signals including the one of interest here, which 
combines the HG amplitude with the theta phase: z(t) = AHG(t) eiφ

TH
(t) (Fig. S1F). At each sample 

point this composite signal takes on some particular value in the complex plane (Fig.s S2A-D). If 
the probability density function (PDF) of z (Fig. S2E) is not radially symmetric, then it must be 
the case that either 1) AHG and φTH share mutual information, or 2) the distribution of φTH is 
nonuniform. Measuring the degree of asymmetry of this PDF, as can be done by computing the 
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mean or first moment M of z(t), provides a useful metric of coupling between the two time 
series. 

Since the question of interest is the degree of coupling between AHG and φTH, rather than 
the statistical properties of either AHG and φTH examined alone, the mean M must first be 
normalized before it can be used as a metric of coupling strength. That is, we are interested in the 
properties of the joint distribution of AHG and φTH taking into account the particular forms of the 
marginal distributions of AHG alone and φTH alone. One way to accomplish this is to compare the 
actual mean M (call it MRAW) to a set of surrogate means {Msur} created by offsetting AHG and 
φTH by some large time lag. That is, we introduce a time lag τ between AHG and φTH such that the 
composite signal is a function of both time and lag: z(t, τ) = AHG(t + τ) eiφ

TH
(t) . Note that the 

dependence (if any) between AHG and φTH will be a function of the lag τ between them, 
decreasing for large τ, while τ has no effect on the distribution of φTH alone or AHG alone. 
Therefore, any asymmetry in the distribution of z(t, τ) at large τ will be due to the nonuniformity 
of φTH, while the scale (how far points fall from the origin) will be determined by AHG alone. The 
modulus or length of MRAW, compared to the distribution of surrogate lengths, provides a 
measure of the coupling strength, while the angle of M, compared to the distribution of surrogate 
angles, indicates the phase of theta associated with the largest HG amplitudes (Fig. S3). We can 
define a normalized or z-scored length MNORM = (MRAW-μ)/σ, where μ is the mean of the 
surrogate lengths and σ their standard deviation. This normalization insures that MNORM is 
insensitive to the marginal distributions of AHG and φTH and is sensitive only to their joint 
distribution, as desired. In particular, for a given number of sample points within a recording 
block, we can directly compare this metric for cross-frequency coupling strength across different 
channels as well as different frequency bands which may have very different power levels. Also, 
since all recording blocks used were of similar duration, comparisons across different blocks is 
valid. Furthermore, this metric corresponds to a zscore and can be used to determine the 
probability that such a result would have been due to chance. Therefore, we define this 
normalized metric MNORM(τ) as the modulation index used in this paper. With x(t) as the raw 
signal, in MATLAB code this is: 
srate=2003;    %% sampling rate used in this study, in Hz 
numpoints=length(x);   %% number of sample points in raw signal 
numsurrogate=200;   %% number of surrogate values to compare to actual value 
minskip=srate;   %% time lag must be at least this big 
maxskip=numpoints-srate; %% time lag must be smaller than this 
skip=ceil(numpoints.*rand(numsurrogate*2,1)); 
skip(find(skip>maxskip))=[]; 
skip(find(skip<minskip))=[]; 
skip=skip(1:numsurrogate,1); 
surrogate_m=zeros(numsurrogate,1);  
%% HG analytic amplitude time series, uses eegfilt.m from EEGLAB toolbox  
%% (http://www.sccn.ucsd.edu/eeglab/) 
amplitude=abs(hilbert(eegfilt(x,srate,80,150))); 
%% theta analytic phase time series, uses EEGLAB toolbox 
phase=angle(hilbert(eegfilt(x,srate,4,8))); 
%% complex-valued composite signal 
z=amplitude.*exp(i*phase); 
%% mean of z over time, prenormalized value 
m_raw=mean(z);  
%% compute surrogate values 
   for s=1:numsurrogate 
      surrogate_amplitude=[amplitude(skip(s):end) amplitude(1:skip(s)-1)]; 
      surrogate_m(s)=abs(mean(surrogate_amplitude.*exp(i*phase))); 
      disp(numsurrogate-s) 
   end 
%% fit gaussian to surrogate data, uses normfit.m from MATLAB Statistics toolbox 
[surrogate_mean,surrogate_std]=normfit(surrogate_m); 
%% normalize length using surrogate data (z-score) 
m_norm_length=(abs(m_raw)-surrogate_mean)/surrogate_std; 
m_norm_phase=angle(m_raw); 
m_norm=m_norm_length*exp(i*m_norm_phase); 
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Note that this method can also be applied to band-passed signals from two different electrodes in 
order to measure cross-frequency, cross-electrode coupling. One reason we chose to use this 
index rather than a different index such as linear or phase coherence between the HG amplitude 
envelope and the theta band-passed signal because it is more sensitive to certain types of 
nonlinear coupling between amplitude and phase time series. As one example, consider a HG 
amplitude envelope which has a constant mean value (say, 2 microvolts) with small gaussian 
random noise (say, mean of 0 microvolts and standard deviation of 0.1 microvolts). Stipulate that 
this envelope has a transient increase of short duration (say, 30 ms). This transient increase 
occurs at every theta trough with a probability of 0.5, at every theta peak with a probability of 
0.5, and with a probability of 0 at every other phase. Further stipulate that the maximum 
amplitude reached at these two theta phases is different (say, 4 microvolts maximum amplitude if 
the transient occurs at the theta peak, but 10 microvolts if the transient occurs at the theta 
trough). This synthetic signal can be viewed as a very simple model of the activation and 
refractory period of a local neuronal population in a given cortical area. In this simple case, both 
linear and phase coherence between the HG amplitude envelope and the theta filtered signal will 
be at chance levels despite the fact that the amplitude time series is a direct function of theta 
phase, while the normalized modulation index used here will detect very strong and significant 
coupling, as it should. Coherence is a linear measure which does not perform well given the 
nonlinear and stochastic nature of this strong coupling, making the modulation index used here a 
more appropriate tool to use in the analysis of theta/HG coupling. 

To create Fig. 1D, first the raw signal xRAW(t) from 1B was separated into bands with 
center frequencies from 5 Hz to 200 Hz, in 5 Hz steps with 4 Hz bandwidths. This created a set 
of 40 real-valued band-pass filtered signals {xAMPLITUDE_BP(t)}. Second, a different set of 19 real-
valued band-pass filtered signals {xPHASE_BP(t)} was created by filtering the raw signal xRAW(t) 
with center frequencies from 2 Hz to 20 Hz, in 1 Hz steps with 1 Hz bandwidths. Third, the 
Hilbert Transform was applied to both sets to generate complex-valued analytic band-passed 
signals. Fourth, the absolute value of {xAMPLITUDE_BP(t)} taken to create a set of analytic 
amplitude time series {ABP(t)} and the phase of {xPHASE_BP(t)} was extracted to create a set of 
analytic phase time series {φBP(t)}. Fifth, the normalized modulation index described above was 
computed for all pairs of amplitude and phase time series, generating 760 index values. Sixth, a 
statistical significance threshold was established after Bonferroni correction for multiple 
comparisons. With α = 0.001 and N = 760 comparisons, an index value greater than 4.7 was 
required for significance. 

A similar procedure was used to create Fig. S4. First, the raw signal xRAW(t) from all 
electrodes in one recording block in all subjects was bandpassed in the HG range and the analytic 
amplitudes extracted. Second, a set of 28 real-valued band-pass filtered signals {xPHASE_BP(t)} 
was created by filtering the raw signal xRAW(t) with center frequencies from 3 Hz to 30 Hz, in 1 
Hz steps with 1 Hz bandwidths. Third, the modulation index between the HG analytic amplitudes 
and all phase time series was computed. Fourth, the mean modulation index value across all 
electrodes and subjects was computed, with standard error estimated with bootstrap resampling. 

To create Fig.s 2 and S6-7, the zero-lag modulation index value between HG amplitude 
and theta phase was computed as described above for each electrode in each subject for each 
task, resulting in 4081 values. In addition, the mean HG and theta amplitudes were computed for 
all electrodes in all subjects for each task. With α = 0.01 and N = 4081 comparisons, an index 
value greater than 4.57 was required for significance (red line in Fig. 2A). Only points with 
modulation index values greater than 4.57 were used for computing the correlations for Fig.s 2B-



Supporting Online Material    

 6

C. Intermediate variables generated while computing the normalized modulation index were used 
to create Fig.s S6-7. 

To create Fig.s 3A and S8, first all recording blocks for each subject were concatenated 
and filtered in the HG and theta bands. Second, the modulation index M(τ) was computed for all 
electrodes at a series of lags from -1000 ms to 1000 ms in 25 ms steps. Third, a recursive 
procedure was used to determine the lag τmax producing the largest |M(τ)| for each electrode at a 
temporal resolution of 0.5 ms (the limit set by the sampling rate). In this case, 1000 surrogate 
values were used rather than 200 as for the block-specific analyses. Fourth, the modulation index 
value at τmax was used to get an uncorrected, two-tailed p-value. Fifth, two FDR corrections were 
applied after acquiring uncorrected p-values for all electrodes in all subjects. The first FDR 
correction, with α = 0.05, was used to determine which channels to include in Fig.s 3A and S8 
(292 out of 299 tested channels, 97.7%). The second FDR correction, with α = 0.001, was 
reported in the main text (254 out of 299 tested channels, 84.3%). For subject-specific 
information, see CLINICAL INFORMATION AND ADDITION TESTS.  

To create Fig.s 3B-E, first the block-specific modulation index values were computed for 
all electrodes and tasks in all subjects. Second, the difference between the length of the block-
specific modulation index from the mean modulation index value for all tasks recorded that day 
was computed for each subject. This list of block-specific differences for all electrodes in one 
subject was termed the spatial pattern vector for that task. Fig.s 3B-C display this spatial pattern 
for two different tasks in subject 5. Third, for each subject, each pair of recording blocks was 
labeled SIMILAR or DIFFERENT depending on which task the patient was performing for each 
block. For example, a pair of recording blocks acquired during a verb generation task would be 
labeled SIMILAR, while a verb generation block and a visual picture naming block would be 
labeled DIFFERENT. Fourth, the correlation coefficient between the spatial pattern vectors for 
each block in subject 5 was computed and is shown in Fig. 3D with tasks grouped according to 
similarity. For Fig. 3D, the task list is: 1-4, passive auditory listening to tones or phonemes; 5, 
mouth motor activation; 6, verb generation; 7, hand motor activation; 8-11 auditory working 
memory; 12-13, linguistic target detection; 14-17, auditory-vibrotactile target detection. Note 
that tasks are not ordered chronologically, and that while similar tasks are grouped together, the 
specific ordering of tasks within a group as well as the ordering between separate groups is 
arbitrary. To create Fig. 3E, the mean correlation between spatial pattern vectors for the 58 task 
pairs in the SIMILAR category  was computed, and as was the mean correlation between spatial 
pattern vectors for the 617 task pairs in the DIFFERENT category. Bootstrap resampling was 
used to determine the standard error of this estimate of the mean. 

To create Fig. S5A, first HG analytic amplitude time series were generated for 2 
electrodes from a recording block where the subject passively heard a series of tones while 
watching a slideshow. Second, 480 epochs (600 ms) centered on the tone onset were extracted 
from the HG time series. Third, the mean HG amplitude trace (over epochs) was computed. 
Fourth, traces were baseline corrected by subtracting the mean HG amplitude for all prestimulus 
sample points over all epochs from each trace. Fifth, bootstrap resampling was used to estimate 
the standard error for each time point. An event-related change in HG amplitude was considered 
significant if it remained at least 3 standard deviations away from the baseline-corrected 
prestimulus mean of zero for at least 50 ms using the surrogate procedure used to determine 
significance for Fig. 1B. Sixth, zero-lag modulation index values for HG amplitude and theta 
phase were computed for these electrodes as above. 
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To create Fig. S5B, first HG analytic amplitude time series and theta analytic phase time 
series were generated for all electrodes in all subjects from a recording block where the subjects 
were engaged in an auditory linguistic target-detection task. Second, sample points no more than 
500 ms before a stimulus onset were labeled PRESTIMULUS, while sample points no more than 
500 ms after stimulus onset were labeled POSTSTIMULUS. Points not within these ranges were 
discarded. Third, modulation index values were computed for the PRESTIMULUS and 
POSTSTIMULUS sets separately. Fourth, the mean modulation index value over all electrodes 
in all subjects was computed. Bootstrap resampling was used to estimate the standard error. 
Since the difference in the mean modulation index value for the PRESTIMULUS and 
POSTSTIMULUS sets is much less than the standard error, the mean modulation index values 
are not significantly different. 

To create Fig. S2E, the high gamma amplitude was sorted by theta phase and a fit with a 
parametric distribution. First, each value of φTH(t) was rank-ordered from (-π,π] and placed into 
one of 32 equal sized bins. The mean phase in each bin was identified as the bin phase φ1, φ2, …, 
φ32. Second, for each time point t, A HG(t) was assigned a bin phase from φ1, φ2, …, φ32 and sorted 
into one of 32 bins A1, A2, …, A32 as a function of the phase value φTH(t) occurring at that time. 
Fourth, a gamma distribution was fit to each amplitude set A1, A2, …, A32, producing 2 
parameters for each bin phase (gamfit.m, part of the Statistic toolbox in MATLAB). Fifth, for 
each bin phase at 100 equally spaced points representing amplitude from 0 to 5 μV, a gamma 
probability density function was generated. That is, the probability density p was estimated for 
the 3200 points corresponding to 100 values of high gamma amplitude occurring at each of 32 
different theta phases. Sixth, intermediate values were linearly interpolated before plotting 
(griddata.m). 
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CLINICAL INFORMATION AND ADDITIONAL TESTS 
(supporting online text) 
 
CLINICAL INFORMATION 
 
Subject 1 was a 37 year old right handed woman with medically intractable complex partial 
seizures. MRI was normal, PET scan showed left temporal hypometabolism. She had a left 
anterior temporal lobectomy including the left amygdala and anterior hippocampus. Pathology 
showed left mesial temporal sclerosis. Considering all tested electrodes, 62/62 (100%) channels 
showed significant theta/high gamma coupling at p < 0.001 after false discovery rate (FDR) 
correction for multiple comparisons. Considering electrodes over resected tissue only, 9/9 
(100%) channels were significant at p <0.001. Considering only electrodes not over resected 
tissue, 53/53 (100%) channels were significant at p < 0.001.  Please note that “resected tissue” 
does not imply only epileptic tissue.  The neurosurgeon often removes a variable amount of 
histologically and electrophysiologically normal tissue surrounding an epileptic focus.  
 
Subject 2 was a 45 year old right handed woman with intractable complex partial seizures. MRI 
showed abnormal signal and thinning of the left frontal opercular cortex and insular cortex, as 
well as diminished size of the left hippocampus. She had resection of a portion of the left frontal 
lobe and left amygdala and hippocampus.  Pathology showed cortical dysplasia. Considering all 
tested electrodes, 48/61 (78.7%) channels showed significant theta/high gamma coupling at p < 
0.001 after false discovery rate (FDR) correction for multiple comparisons. Considering 
electrodes over resected tissue only, 8/11 (72.7%) channels were significant at p < 0.001. 
Considering only electrodes not over resected tissue, 40/50 (80%) channels were significant at p 
< 0.001. 
 
Subject 3 was a 35 year old right handed woman with a left temporal abscess in childhood 
resulting in intractable complex partial seizures. MRI showed a small resection cavity in the 
anterior inferior left temporal lobe, a small area of gliosis in the left cingulate gyrus, and subtle 
changes in the left hippocampal body and tail. She had a left anterior temporal lobectomy 
including amygdala and anterior hippocampus. Pathology showed gliosis and hippocampal 
sclerosis. Considering all tested electrodes, 41/52 (78.8%) channels showed significant 
theta/high gamma coupling at p < 0.001 after false discovery rate (FDR) correction for multiple 
comparisons. Considering electrodes over resected tissue only, 10/12 (83.3%) channels were 
significant at p < 0.001. Considering only electrodes not over resected tissue, 31/40 (77.5%) 
channels were significant at p < 0.001. 
 
Subject 4 was a 24 year old left handed woman who had childhood meningitis and cerebritis with 
a stroke, and intractable complex partial seizures. MRI showed encephalomalacia in the left 
partietal lobe. She had a left anterior temporal lobectomy including amydala and anterior 
hippocampus. Pathology was reported as gliosis. Considering all tested electrodes, 38/60 
(63.3%) channels showed significant theta/high gamma coupling at p < 0.001 after false 
discovery rate (FDR) correction for multiple comparisons. Considering electrodes over the 
encephalomalacia left by the childhood stroke and the electrodes over resected tissue, 5/20 (25%) 
channels were significant at p < 0.001. Considering only the remaining electrodes not over the 
gap or resected tissue, 33/40 (82.5%) channels were significant at p < 0.001. 
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Subject 5 was a 37 year old right handed woman with reflex epilepsy: reading-induced seizures 
consisting of word blindness, and then a subjective feeling that she was losing awareness of her 
surroundings. MRI showed left mesial temporal sclerosis. She had a left posterior inferior 
temporal resection. Pathology was reported as gliosis and focal neuronal loss. Considering all 
tested electrodes, 63/64 (98.4%) channels showed significant theta/high gamma coupling at p < 
0.001 after false discovery rate (FDR) correction for multiple comparisons. Considering 
electrodes over resected tissue only, 8/8 (100%) channels were significant at p < 0.001. 
Considering only electrodes not over resected tissue, 55/56 (98.2%) channels were significant at 
p < 0.001. 
 
ADDITIONAL TESTS 

 
Here we address 4 potential confounds to our data. The first consideration is that the 

theta/HG coupling reported here is an artifact of flawed signal processing or analysis. One 
possibility is that theta/HG coupling is an artifact of a particular time-frequency decomposition 
and would disappear if another were used. Multiple different time-frequency decompositions 
(short-time Fourier transform, wavelet transform, band-passed locked averaging, Hilbert 
transform, Hilbert-Huang transform, etc.) were used in the analysis of a subset of channels of one 
subject before all channels in all subjects were examined. Each of these decompositions showed 
evidence of significant coupling, indicating that the coupling observed is not dependent upon any 
particular time-frequency analysis algorithm or settings. 

A second issue to consider stems from the power-law distribution of power as a function 
of frequency in the ECoG signal. This means that the low frequency components of the ECoG 
are much larger in amplitude than the high frequency components. As an example, the theta-
filtered waveform is typically 10-20 times larger in amplitude than the HG-filtered waveform. 
Perhaps the filtering process is incomplete and residual features of the theta waveform remain in 
the HG filtered signal and distort further analyses. This would be unusual, given the known filter 
properties. However, several different empirical tests of this possibility (not shown) using 
synthetic data and mixed synthetic-empirical data make this unlikely. 

In one such mixed test, an ECoG channel is first filtered in the theta and HG ranges and 
then one or both time series are scaled by different fixed constants. These two signals are added 
back together and the sum treated as a raw signal and taken through the entire analysis 
procedure. If neither time series is rescaled, there is no change in the significance of coupling, as 
expected. If the theta filtered time series alone is rescaled (which has no effect on theta phase), 
there is no effect on the HG signal or the final modulation index, demonstrating that coupling is 
not the result of theta power ‘seeping through’ the band-pass filter. If the HG time series alone is 
rescaled, the length of the prenormalized modulation index does change (as it is sensitive to high 
gamma amplitude), but the normalized modulation index does not (since the surrogate 
distribution is rescaled by the same factor). If the ratio of power in the two bands was an 
important factor in the analysis which could lead to artifacts, then one would expect significantly 
different coupling strengths to result. In fact, no such differences were found in several tests of 
randomly selected channels, supporting the claim that the modulation of theta/HG coupling 
strength by theta power is the result of interacting neuronal populations rather than analysis 
artifacts. 
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A third potential confound is that the analysis procedure shows a systematic bias and 
therefore coupling would be found whether or not it was actually present in the signal. Again, 
several different empirical tests of this possibility (not shown) using synthetic data and mixed 
synthetic-actual data make this unlikely. In one such test, theta and HG filtered signals are 
extracted, the HG filtered signal shifted by a fixed time lag before the two time series were added 
together and then run through the entire analysis procedure. Here the statistics of the HG and 
theta filtered time series are preserved but the amplitude-phase relationship between them is not. 
In this case no coupling was found. In a second test, the HG analytic amplitude time series 
AHG(t) was replaced with a surrogate amplitude time series AS(t) = [1+a1+a2cos(π+φTH(t))] 
AHG(t) for several different values of the parameters a1 and a2 from 0 to 1. If a2 = 0 and a1 = 1, 
then AS(t) = 2 AHG(t) and the length of the prenormalized modulation index |MRAW| will be twice 
as long. One can ask which value of a2 is required when a1 = 0 in order to double the 
prenormalized |MRAW|. The ratio of a1 to a2 provides a measure of the relative sensitivity of the 
analysis procedure to non-specific versus theta phase-specific changes in HG amplitude. For 
actual data from several channels, a mean value of a2 = 0.083 is required, meaning that the length 
of the prenormalized modulation index is 12 times more sensitive to phase-specific changes in 
amplitude. Furthermore, since nonspecific changes in amplitude will scale the surrogate 
distribution by the same degree, changes in a1 (but not a2) are invisible to the normalized 
modulation index used here. By letting a2 assume negative values, we can thus ‘extract’ the theta 
phase modulation of HG amplitude such that |M| for the surrogate amplitude time series 
approaches zero. This shows that the analysis procedure used is extremely sensitive to phase 
modulation of amplitude and that the statistical tests are immune to global rescaling of 
amplitudes. 

Computing the modulation index as a function of lag provides another avenue of 
addressing the above issues. The fact that coupling strength drops as a function of lag argues 
against a systematic bias for detecting spurious coupling. The coupling strength at large lags is 
used to create a surrogate distribution against which the significance of coupling at small lags is 
tested. Therefore, a systematic bias would force coupling at small lags to not be significant. 

A fourth potential confound is that the observed coupling may be an artifact of event-
related changes in the ECoG caused by stimulus onsets or motor responses. Fig. S4A shows an 
example of the event-related changes in HG amplitude in response to auditory presentation of 
tones. The electrode which shows strong event-related HG amplitude modulation does not show 
significant theta/HG coupling, while the electrode which does not show event-related amplitude 
modulation shows strong theta/HG coupling. This is in accord with our informal observations 
that the strongest coupling in all subjects tends to occur at electrodes which show weak event-
related responses, with the strongest coupling tending to occur in frontal and anterior temporal 
electrodes, consistent with the proposed role of theta/HG coupling in top-down control. More 
formally, Fig. S4B shows that there is no difference in the mean theta/HG coupling strength pre- 
to post-stimulus, strong evidence that the observed coupling is not an artifact due to event-related 
ECoG changes. 
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FIGURE S1. MODULATION INDEX EXAMPLE. A) One second of ECoG data from the same electrode examined in Fig. 1 showing the 
ECoG signal unfiltered (blue), filtered in the theta (4-8 Hz) range (black), and filtered in the high gamma (80-150 Hz, HG) range 
(red). B) Theta filtered ECoG from A (black) and the theta analytic amplitude time series (red),  which is also known as the amplitude
envelope. C) The theta analytic phase time series. D) HG filtered ECoG from A (black) and the HG analytic amplitude time series 
(red). E) HG analytic phase time series. F) The real (black) and imaginary (red) parts of the complex-valued composite analytic signal
z(t) formed by combining the HG analytic amplitude time series with the theta analytic phase time series.
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FIGURE S2. MODULATION INDEX EXAMPLE. A) The real (black) and imaginary (red) parts of z(t) as in Fig. S1F with two time points
marked at t = 189 ms and t = 929 ms. B) The value of the composite signal z(t) at t = 189 ms in the complex plane (blue), together
with the values of the real (black) and imaginary (red) parts.  C) As in B, for t = 929 ms. D) The values of z(t) for all sample points
over the one second interval examined. E) The estimated joint probability density function (PDF) for z(t), which can be thought of
as a normalized histogram of values assumed by z in the complex plane. Note that if the distribution of theta phase is uniform 
and the HG amplitude time series and the theta phase time series are statistically independent, then this PDF will be radially
symmetric. Since the phase distribution is uniform (data not shown), then any the observed asymmetry must be due to statistical
dependence between the two time series.
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FIGURE S3. MODULATION INDEX EXAMPLE. A) The raw modulation index value in the complex plane (blue), which is the temporal
mean of z(t), or the first moment of the PDF shown in Fig. S2E. Also shown are 200 surrogate values aquired by computing the
modulation index after first shifting the HG amplitude time series and the theta phase time series by some large lag. In this way
the statistics of the individual time series are maintained, and only the pairing of sample points between the two time series is
changed. Each actual and surrogate modulation index value has a modulus or length (which is used to determine the strength
of coupling) and a phase, which indicates where in the low freuqency waveform large analytic amplitudes of the high frequency
band tend to occur. All relevant independent statistical biases of the two time series will be reflected by the modulus and phase
of the surrogate values. B) The histogram of surrogate lengths (black) and the best fit Gaussian (red). Normalizing the raw
modulation index values by the surrogate fits isolates the effect of interest, the statistical dependence between the two time series.
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which had weak event-related responses, predominantly frontal electrodes. B) The mean modulation index across all electrodes
in all subjects computed using only sample points within 500 ms before stimulus onset (prestimulus) or within 500 ms after
stimulus onset (poststimulus). If the observed theta/HG coupling were due to event-related changes, the poststimulus modulation
index should be significantly different from the prestimulus modulation index, which is not the case.
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FIGURE S6. THETA/HG COUPLING IS LARGELY INDEPENDENT
OF MEAN HG AMPLITUDE. A) Mean surrogate modulation
index values as a function of mean HG amplitude for all
electrodes in all subjects for all tasks. B) The standard
deviation of surrogate modulation index values as a
function of mean HG amplitude for all data. C) Actual
(prenormalized) modulation index values as a function
of mean HG amplitude for all data, showing a moderate
positive correlation, in line with the surrogate data. D)
Normalized modulation index values as a function of
mean HG amplitude, exhibiting a weak negative
correlation (see also Fig. 2C). E) Mean theta amplitude
as a function of mean HG amplitude for all all electrodes
in all subjects for all tasks.
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FIGURE S7. LARGE HG AMPLITUDE VALUES OCCUR MORE OFTEN NEAR THE TROUGH OF THE THETA WAVEFORM.
A) Preferred theta phase as a function of mean HG amplitude for all actual modulation index values in all electrodes
in all subjects for all tasks. The theta trough corresponds to a postive or negative value of ?. B) Preferred theta phase
as a function of mean HG amplitude for all surrogate values in all data as above. Note that there is no dominant phase
as is the case for actual data. C) Actual referred theta phase as a function of mean theta amplitude for all data as above.
D) Surrogate preferred theta phase as a function of mean theta amplitude for all data as above.
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THETA/HG COUPLING STRENGTH IS MAXIMAL
FOR SMALL LAGS BETWEEN THE TIME SERIES
BUT FALLS TO CHANCE FOR LARGE LAGS.
A) The modulation index as a function of the
time lag between the HG amplitude time
series and the theta phase time series for the
electrode analyzed in Fig. 1. The index has
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