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Background:  Electroencephalographic  data  are  easily  contaminated  by  signals  of  non-neural  origin.  Inde-
pendent  component  analysis  (ICA)  can help  correct  EEG  data  for such  artifacts.  Artifact  independent
components  (ICs)  can  be identified  by experts  via  visual  inspection.  But  artifact  features  are  sometimes
ambiguous  or  difficult  to  notice,  and  even  experts  may  disagree  about  how  to categorise  a  particular  com-
ponent. It  is therefore  important  to inform  users  on  artifact  properties,  and  give them  the  opportunity  to
intervene.
New Method:  Here  we  first  describe  artifacts  captured  by  ICA.  We  review  current  methods  to  automatically
select  artifactual  components  for  rejection,  and introduce  the SASICA  software,  implementing  several
novel  selection  algorithms  as  well  as  two previously  described  automated  methods  (ADJUST,  Mognon
et  al.  Psychophysiology  2011;48(2):229;  and  FASTER,  Nolan  et al. J Neurosci  Methods  2010;48(1):152).
Results:  We  evaluate  these  algorithms  by comparing  selections  suggested  by SASICA  and  other  methods
to  manual  rejections  by experts.  The  results  show  that  these  methods  can  inform  observers  to  improve
rejections.  However,  no  automated  method  can  accurately  isolate  artifacts  without  supervision.  The  com-
prehensive  and interactive  plots  produced  by  SASICA  therefore  constitute  a helpful  guide  for  human  users
for making  final  decisions.

Conclusions: Rejecting  ICs  before  EEG  data  analysis  unavoidably  requires  some  level of  supervision.  SASICA
offers observers  detailed  information  to guide  selection  of  artifact  ICs.  Because  it  uses  quantitative  param-
eters and thresholds,  it improves  objectivity  and reproducibility  in reporting  pre-processing  procedures.
SASICA  is also  a didactic  tool  that allows  users  to quickly  understand  what  signal  features  captured  by
ICs  make  them  likely  to  reflect  artifacts.
. Introduction

The electroencephalogram (EEG) recorded from electrodes
laced on the scalp can provide information about underlying brain
ctivity, but attempts to interpret the recorded signal are invari-
bly hindered by the presence of artifacts, i.e. electrical signals of
on-neural origin.

One major issue in interpreting scalp EEG is that the signal
ecorded at each electrode reflects a mixture of several sources of

ctivity of various origin within and outside of the brain. A widely
sed method that allows one to isolate and subtract independent
ources of activity is independent component analysis (ICA). This

∗ Corresponding author at: Humboldt-Universität zu Berlin, Berlin School of Mind
nd Brain, Luisenstrasse 56, 10117 Berlin, Germany. Tel.: +49 30 2093 1794.

E-mail address: maximilien.chaumon@gmail.com (M.  Chaumon).
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165-0270/© 2015 Elsevier B.V. All rights reserved.
© 2015  Elsevier  B.V.  All  rights  reserved.

method has been introduced to EEG analysis by Makeig et al. (1996),
and popularized in the EEGLAB (Delorme and Makeig, 2004), a
widely used software package running under MATLAB (The Math-
works). ICA allows isolation of statistically independent sources,
called independent components (ICs) as linear combinations of
electrodes. Each IC is characterized by a topography (set of inverse
weights, describing the projection of the independent source onto
the electrode cap), and a time course, which can be thought of as
the signal that would have been recorded with an electrode located
directly at that source. Because ICs are linear combinations of the
original electrode signal, they can be treated in many respects like
single electrodes. In particular, they can be subtracted easily from
the signal just like one would discard a bad electrode after recor-

ding. After removal of a bad electrode, the signal is free of the
artifacts that occurred at that electrode. Likewise, after subtraction
of an artifactual IC, the remaining signal is free from artifacts that
were captured entirely by that IC.

dx.doi.org/10.1016/j.jneumeth.2015.02.025
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2015.02.025&domain=pdf
mailto:maximilien.chaumon@gmail.com
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This method of component subtraction is widely used to remove
rtifacts such as eye blinks or muscle activity from EEG recordings
e.g. Delorme et al., 2007; Jung et al., 2000a,b; Mantini et al., 2007;

cMenamin et al., 2010; Urrestarazu et al., 2004). Some ICs cap-
ure a large amount of non-brain sources that recur in the signal,
uch as eye and muscle movements, heart beats, high impedance
lectrodes, or line noise (Jung et al., 2000a). However, although
isualisations of IC activations and the effect of their subtraction
ake a compelling case for the usefulness of this approach in sepa-

ating artifacts from neural signal, it is usually left to the user to
crutinise the ICA output and judge which ICs capture artifacts.
lthough selecting artifact ICs should be based on objective criteria,

 comprehensive review of the signal features present in classical
rtifact types is to our knowledge missing in the literature. We  will
ere define and illustrate precisely the features of the most com-
on  artifact types, and explain how these features are reflected in

arious statistical measures that can be computed on ICs, in order
o provide investigators with a proper means of deciding which ICs
apture artifacts and which ones do not.

The features of artifactual ICs can be visualized using various
epresentations. EEGLAB offers a number of handy visual represen-
ations of IC properties that allow a trained observer to accurately
dentify artifactual ICs, but some features are not immediately obvi-
us from these representations and time-consuming scrutiny and
xtensive experience is required. A number of automated proce-
ures exist (e.g. Campos Viola et al., 2009; Delorme et al., 2007;
ognon et al., 2011; Nolan et al., 2010; Winkler et al., 2011) that

ompute objective statistical measures from ICs, and use these
easures to automatically decide whether a component is artifac-

ual or not. However, because of the high variability in EEG signals,
hese methods are inevitably prone to type I and type II errors.
urthermore, although some artifacts are unequivocally considered

 nuisance (e.g. badly connected electrode noise), and have to be
emoved from the signal before analysis, others may  be more con-
roversial (e.g. Olbrich et al., 2011), and not every experimenter

ay  want to discard them. We  thus promote here an intermediate
ethod, using the objective measures computed by several meth-

ds and enhanced EEGLAB visual representations to allow users to
ecide whether or not individual ICs reflect artifacts and need to be
emoved from the data or not.

In this paper, we first describe the relevant signal features
elated to the most common EEG artifacts – ocular artifacts, tonic
uscle artifacts, loose electrode connections (high impedance),

nd exceptional high amplitude events – and show how these
eatures can be mapped onto a number of visually recognizable
ttributes in visual representations of the signal and on objective
tatistical features of the signal. Some of these measures have been
ntroduced before in plugins for EEGLAB (ADJUST Mognon et al.,
011; and FASTER Nolan et al., 2010). Second, we  introduce the
ASICA plugin (Semi-Automated Selection of Independent Com-
onents of the electroencephalogram for Artifact correction) for
EGLAB that provides a convenient visualization of all of these
easures and allows refining selections manually if needed (Fig. 1).
e thereby provide the user with all required information for

nderstanding the reasons why a given component might be
emoved from the data. Finally, we evaluate all methods against
xpert classifications for a total of 21 experimental datasets, and
llustrate the impact of (in)appropriately identifying and removing
rtifactual components on signal quality.

. Methods
.1. Signals captured by ICA

Several categories of signals are readily isolated by single ICs.
pecifically, ICs can capture (1) a source of neural activity, (2)
ence Methods 250 (2015) 47–63

variations of potential due to blinks, (3) eye movements (saccades),
(4) muscle contraction, or (5) line noise or a misconnected (high
impedance) electrode, commonly referred to as a “bad channel”.

Importantly, ICA may  also fail to separate signals, and many
components (often a majority) do not fit a single category. In
essence, separating distinct classes of ICs is thus a signal detection
problem in which the experimenter needs to avoid two mistakes:
missing to-be-detected artifact ICs (type II error) and falsely repor-
ting other non-artifactual ICs (type I error). In the context of artifact
correction, the former mistake would imply under-correction while
the latter would imply over-correction. Another challenge is to
solve this task using objective criteria that can be readily commu-
nicated, for example in publications.

All automated methods reviewed here have their own heuristic
to identify at least some of these ICs. In the following, we describe all
the features of each category of IC, as well as a number of statistical
measures designed to reveal these features. We include measures
computed by SASICA, CORRMAP (Campos Viola et al., 2009), ADJUST
(Mognon et al., 2011), and FASTER (Nolan et al., 2010). We  present
a summary of all measures offered by these methods in Table 1. We
refer the interested reader to the original papers for details on each
method.

2.1.1. Neural activity
The success of ICA in EEG analysis is largely due to the plausibil-

ity of the solution returned by ICA. Indeed, in most cases, when
performed on a full-rank long enough dataset, the topography
and time course of at least a handful of components compellingly
allow identifying them as capturing selective neural activity. These
components are often dipolar, i.e. they are well modeled by one,
or sometimes two, dipolar sources (Delorme et al., 2012), and
their topography is regular and smooth. Moreover, they often
rank amongst the strongest components in the dataset (i.e. those
explaining most variance in the signal, and sorted first in EEGLAB),
they often contain a peak at physiological frequencies (e.g. alpha,
beta, delta or theta), and may  show a strong evoked response to
sensory stimuli. These properties are listed in Fig. 2A for reference.

The dipolar nature of the components can be measured by first
fitting a dipolar source to the component (as implemented in the
DIPFIT toolbox distributed with EEGLAB; applied to all components
of all datasets tested in this article), and then measuring the resid-
ual variance after removing the fitted data. Residual variance is
often very low for accurately modeled components (see results,
Fig. 2B-D). Therefore, this measure is used routinely within EEGLAB
to select neural components for analyses conducted on component
time courses. However, it should be noted that some components
with low residual variance may  be artifactual. For instance blink or
saccade components can be very well modeled by dipoles placed
in the eyes of the subjects (see Fig. 3A, 5% residual variance of a
dipole fit, see Section 2.2.2.5 on residual variance for explanation).
Some pure tonic muscle components may  also be well modeled by
a dipole placed close to the scalp, where muscular activity arises
(e.g. Fig. 4B, 9% residual variance). Furthermore, several spatially
separated sources of neural activity working in synchrony will not
be well modeled by a dipole (e.g. Fig. 2E, 31% residual).

It is often the case that components neatly isolating neural activ-
ity rank amongst the first twenty components in a dataset. This
feature is an empirical observation that has to our knowledge not
been measured so far. In the 8 training datasets used in this arti-
cle, 50% of the components rated as neural by the experts ranked
amongst the 13% largest components. Nevertheless, artifacts can
also be of strong amplitude (e.g. blinks), so this feature may not

be discriminant for deciding whether a component is neural or
artifactual.

ICs capturing neural activity often contain a peak in the Alpha
(8–12 Hz, Fig. 2B), Beta (15–30 Hz, Fig. 2C), delta (1–4 Hz), or Theta
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Fig. 1. Graphical user interface. (A) The main graphical interface window allows choosing which methods to use to select components. When pressing the “Computeb̈utton,
the  plugin computes all enabled methods on the currently loaded EEG dataset and displays the results in separate windows. (B) The first window shows the value of the
computed measures (y axis) for all components (x axis). The threshold for selection is shown as a horizontal red line in each panel, and every component that passes the
threshold (above or below, according to the measure considered, see text for details) is highlighted in a color specific to the measure being considered, reproduced in the
top-right corner of the panel, and used in the window shown in D. A mouse click on any point opens a detailed component properties window. Note that Signal to noise ratio
and  residual variance are shown in this window here for illustration but were not used to select components in the window shown in (D). (C) In this window, all component
topographies are shown, along with a colored button indicating whether a given component is selected for rejection (red) or not (green). Next to the selected components’
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opographies, colored dots indicate which computed measure passed threshold. (
long  with the classical EEGLAB plots (topography, single trial time course and pow
ikely  to select the component for rejection (see Section 2.2.2 for details).

∼5 Hz) frequency range. This is particularly true of components
hose topography loads mostly on posterior, middle, or frontal

ensors for Alpha, Beta, and Theta frequencies, respectively. This
eature may  nevertheless also not be diagnostic for neural activity
n and of itself because some neural components may  be devoid of

 prominent peak in these physiological bands (e.g. Fig. 2D).
Finally another feature of neural ICs is a tendency to show strong

voked responses to sensory stimuli (Fig. 2B–D). However, this fea-
ure is not diagnostic alone either, because not all tasks involve
ensory stimulation, and not all components showing an evoked
esponse can be classified as reflecting pure neural activity (e.g.
mbiguous components may  capture some evoked activity, Fig. 4F).

n some situations, artifacts can also occur in an event related

anner (e.g. electrical artifact due to button press, Fig. 5C). Never-
heless, a measure of the ratio in power between prestimulus and
oststimulus activity may  help in identifying neural components. A
 component properties and measures can be summarized in individual windows,
ectrum). All measures are scaled so that larger bars mean that a measure is more

measure of this type is implemented in SASICA (see Sections 2.2.2.4
and 3.9.1).

In sum, although there is ample information in the signal that
a trained observer could use to identify most ICs capturing neu-
ral activity, this information is scattered across multiple features
of the signal, which individually do not unequivocally allow iden-
tification. This reason, and because some ICs returned by ICA are
inherently ambiguous make it important to identify artifactual ICs.

2.1.2. Blink components
Components capturing blink activity are the easiest compo-

nents to identify. Their topography is essentially flat (i.e. inverse

weights close to zero) at all but a few frontal and all EOG electrodes.
Activity is usually very large during blinks and the components
rank amongst the first dozen components because blinks gen-
erate artifacts of extreme amplitude. Time courses show abrupt
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Table 1
Measures computed by the three automated tools evaluated here. Abbreviations refer to those used in figures and throughout the paper.

Tool Artifact type Measure Abbreviation

SASICA Blinks/vertical eye movements Correlation with vertical EOG electrodes CorrV
Horizontal eye movements Correlation with horizontal EOG electrodes CorrH
Muscle Low autocorrelation of time-course LoAC or AutoCorr
Bad  channel Focal channel topography FocCh
Rare event Focal trial activity FocTr
Non dipolar component Residual variance ResVar
Bad channel Correlation with Bad channel CorrCh

FASTER Eye  blinks/saccades Correlation with EOG electrodes EOGcorr
“Pop-Off¨ Spatial Kurtosis SK
White noise Slope of the power spectrum SpecSl
White noise Hurst exponent HE
White noise Median slope of time-course MedGrad

ADJUST Eye  blinks Temporal Kurtosis TK
Eye  blinks Spatial average difference SAD
Eye  blinks Spatial variance difference SVD
Vertical Eye Movements Maximum epoch variance MEV
Horizontal Eye Movements Spatial eye difference SED
Generic Discontinuities Generic discontinuity spatial feature GDSF

Fig. 2. Neural components. Three example neural components and their properties, as shown by SASICA. (A) Properties to pay particular attention to in order to determine if
a  component captures Neural activity. None of these properties should be met  for a component to be considered as isolating Neural activity. (B and C) Two exemplar neural
components, showing all of the properties listed in (A). (D) Neural component with non-dipolar topography, where the Residual Variance (ResV) measure passed threshold.
Abbreviations for all measures are listed in Table 1.
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Fig. 3. Ocular components. Exemplar ocular components and their properties, as shown by SASICA. (A) Properties to pay particular attention to in order to determine if a
component captures blink activity. (B and C) Two exemplar blink components, where measures designed to identify ocular components (cyan bars) passed threshold, and
showing  all properties listed in (A). (D) Properties to pay particular attention to in order to determine if a component captures horizontal eye movements. (E and F) Two
exemplar horizontal eye movement components, where measures designed to identify ocular components (cyan bars) passed threshold, and showing all of the properties
listed  in (D). In panels (B), (C), (E) and (F), two situations are depicted, in which EOG electrodes are rendered on the topographical maps (C and F), or not (B and E). (G)
Properties that can be found in non-artifact components that may be mistaken for ocular components. (H) Component mistaken for a blink component due to large inverse
weights  at frontal electrodes (see Section 3.3 and Fig. 8 for reasons why  this is not an ocular component). (I) Component whose high correlation with horizontal EOGs induced
erroneous selection by SASICA and FASTER (see Section 3.4 for reasons why this is not an ocular component). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 4. Muscle components. Example muscle components and their properties, as shown by SASICA, (A) Properties to pay particular attention to in order to determine if a
component captures muscle activity. (B and C) Two exemplar muscle components, where some measures designed to identify noisy components (blue) passed threshold,
and  showing all of the properties listed in (A). (D) Properties that can be found in non-muscle components mistaken for muscle components. (E) Example of component
that  in spite of a focal topography, fails to qualify as muscle component because it does not show the expected steady noise activity characteristic of muscle components.
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F)  Some components reflect mixtures of signals. This component captures at the 

radient measure, characteristic of muscle activity, but also some very high brief ev

igh amplitude variations in otherwise comparatively close to zero
mplitudes, and power spectra show no power peak at physiolog-
cal frequencies. Correlation with EOG electrodes, if available, is
igh. These properties are listed in Fig. 3A for reference.

Fig. 3B and C illustrates blink components showing all the
eatures listed in Fig. 3A. In Fig. 3B, infra-ocular EOG electrodes,
lthough present in the dataset are not rendered on the topogra-
hy (i.e. their spatial coordinates are not registered in the dataset).

n Fig. 3C on the other hand, EOG electrodes are rendered on topo-
raphical maps (i.e. their spatial coordinates are registered in the
ataset). The topography reveals an abrupt polarity reversal at the
rontmost locations where the two EOG electrodes are rendered.

Blink components can be identified automatically by template
atching with a stereotypical activity pattern, as implemented in

ORRMAP. ADJUST combines several spatial and temporal features.
patial Average Difference (SAD) and Spatial Variance Differ-
nce (SVD) capture components with strong differences in signal
etween anterior and posterior channels, and Temporal Kurtosis
TK) indicates the occurrence of rare high amplitude events (i.e.
eavy tailed distribution). Another straightforward measure is to
orrelate the time course of the ICs with EOG electrodes (as imple-

ented in FASTER and SASICA). Each of these measures taken

eparately may  not enable detection of all blink components, but
heir supervised combination can bring a trained observer close to
erfect detection (see Results).
time a noisy and very focal activity pattern with low autocorrelation and median
nd evoked activity that led the experts to categorize it as capturing rare events.

2.1.3. Saccade components
Components capturing horizontal saccade activity load maxi-

mally onto anterior electrodes, but with opposite polarity on both
sides. Vertical saccades load maximally onto anterior sites, with a
topography similar to that of blink components. Time courses show
abrupt step-like variations and power spectra show no power peak
at physiological frequencies. Correlation with EOG electrodes, if
available, is high. These properties are listed in Fig. 3D for reference.

Fig. 3E and F illustrates saccade components showing all the
features listed in Fig. 3D. Similarly to blink components, the dis-
played topography of saccade components depends on whether
or not EOG electrodes are included and rendered in topographical
plots. Fig. 3E shows the case where EOG electrodes are not ren-
dered in the topographical maps, and Fig. 3F shows a case where
four electrodes placed under and on both sides of the eyes (next to
the lateral canthi) are rendered.

These components are identified automatically by template
matching with a stereotypical activity pattern (implemented in
CORRMAP). ADJUST detects vertical and horizontal eye movements
separately. For vertical eye movements, it combines a Maximum
Epoch Variance (MEV) measure that captures components with

strong within epoch variability with the same SAD measure as
for blink components. For horizontal eye movements, it uses MEV
along with a Spatial Eye Difference (SED) measure to capture strong
differences between two lateral regions of the EEG cap. FASTER and
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Fig. 5. Bad channel components. Example bad channel components and their properties, as shown by SASICA. (A) Properties to pay particular attention to in order to determine
if  a component captures activity of a bad channel. (B and C) Two  exemplar bad channel components, where measures designed to identify isolated noise and discontinuities
(green) passed threshold, and showing all of the properties listed in (A). (D) Properties that can be found in ambiguous components mistaken for bad channel components. (E)
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xample component with a smooth (although focal) topography, and a clear evoked
llustrating the overlap between the Bad channel and the Rare events component cat

 few trials, leading to ambiguous classification. (For interpretation of the reference

ASICA use correlation of component time courses with EOG elec-
rodes (EOGCorr, CorrV and CorrH) to detect eye movements and
link components.

.1.4. Muscle components
Tonic muscle activity arising from neck, jaw, and face muscles

roduces a stereotypical activity at electrodes at the edge of the
lectrode cap. Although subjects are usually asked to sit still and
elax, uncontrollable postural activity, as well as muscular activ-
ty due for instance to yawning or swallowing may  occur and be
aptured in the EEG. Components capturing muscle activity are
sually very focal, encompassing a local group of electrodes (some-
imes with opposite polarity) on the edge of the electrode cap. Time
ourses show a steady noise activity, often remarkable because
hey do not vary with task events (i.e. no ERP is visible), but rather
cross trials. Postural muscles may  indeed relax when the subject
nds a comfortable posture (Fig. 4B), or appear temporarily during
he experiment (Fig. 4C). The power spectrum of these compo-

ents often shows strong power at high frequencies (>20 Hz). These
roperties are listed in Fig. 4A for reference.

Muscle components can be detected automatically because their
ime course reveals noise patterns and their topography is focused
nse, mistaken by some users for a bad channel component. (F) Example component
s. This component captures activity of one bad channel that occurred mostly during
lor in this figure legend, the reader is referred to the web version of this article.)

on electrodes around the edge of the electrode cap. This can be
detected by measuring the high time-point by time-point variabil-
ity, captured by the low autocorrelation (LoAC) measure of SASICA,
or by high Median Gradient (MedGrad) value, or low Hurst Expo-
nent (HE) computed by FASTER. ADJUST and CORRMAP do not
attempt to detect muscle components specifically.

2.1.5. Bad channel
When a bad channel shows strong amplitudes, uncorrelated

with other channels, it is readily isolated by ICA in a single com-
ponent. Such bad channel components have a focal topography,
restricted to the bad channel, and their time course reflects the
noisy nature of the recording. They may  also show a very high level
of correlation with marked bad channels. These properties are listed
in Fig. 5A for reference.

Fig. 5B and C illustrates two  exemplar components showing all
the features listed in Fig. 5A. In addition, as noted before, the compo-
nent illustrated in Fig. 5C shows a strong event related response that

corresponded to an artifact generated by response button press.

Bad channels can be detected automatically because of their
Focal Channel topography (FocCh) in SASICA, their high Spatial
Kurtosis (SK) in FASTER, or by the Generic Discontinuity Spatial
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eature (GDSF) and MEV  in ADJUST. Also, components capturing
n isolated bad channel correlate by definition very highly with
ata recorded at that channel, so correlation of ICs with the bad
hannel in question allows identifying these ICs in SASICA (CorrC,
ig. 5B).

.1.6. Rare events
In some cases, a few high-amplitude events may  also be isolated

ith ICA. If the events in question occur at only one electrode, the
ssociated IC topography is focal and the IC in question thus also
ualifies for the bad channel category described above (Fig. 6B). If
hey occur at many electrodes (Fig. 6C), for instance if the subject

oves or touches the electrode cap, the topography is less pre-
ictable. These properties are listed in Fig. 6A for reference. Note
hat if a component captures a unique event, a sensible strategy to
emove the corresponding artifact from the data could be to reject
he affected trial(s) and to compute the ICA anew.

Rare events are detected in SASICA with the Focal Trials (FocTr)
easure, in ADJUST with GDSF and MEV, and in FASTER with SK.

.1.7. Ambiguous components
Finally, it is important to keep in mind that not all ICs may  be

eatly and unequivocally classified as neural or artifactual. Rather,
ome components reflect an ambiguous mixture of signals, and
hould be handled with care. We  do not recommend systemat-
cally rejecting such components, since part of their signal may
e of neural origin. Exemplar mixture components that need spe-
ial attention are illustrated in the last panel of Figs. 3–5. We  will
omment further on these components in Section 3.

.2. SASICA

SASICA computes a number of measures on IC topographies
nd time courses and marks components for rejection. The plugin
an be downloaded from https://github.com/dnacombo/SASICA
nd installed following the instructions on the EEGLAB website
http://sccn.ucsd.edu/wiki/EEGLAB Plugins).

.2.1. Graphical user interface
The graphical user interface is shown in Fig. 1. Each measure can

e enabled or disabled, and thresholds may  be adapted according
o the requirements of a particular dataset or study (Fig. 1A). After
omputation, each measure or method is characterized by a unique
olor that is used to mark ICs identified as artifactual in other figures
Fig. 1B and C). A comprehensive display of component properties
Figs. 1D and 2–6) is invoked by clicking any component in these
gures.

.2.2. Measures computed from components
Below we introduce the 6 measures that SASICA computes from

omponents and the rationale behind their use for selecting artifact
omponents.

For all measures we use the following conventions:

n = 1, 2, . . .,  N a specific channel (N being the number of channels
in the dataset)
c = 1, 2, . . .,  C a specific component (C being the number of com-
ponents in the dataset)
k = 1, 2, . . .,  K a specific trial (K being the number of trials in the
dataset)

t = 1, 2, . . .,  T a specific time sample (T being the number of time
points in each trial)
x(n, k, t) or x(c, k, t): EEG data at channel n or component c, on
trial k and at time t
Wc(n): inverse weight of channel n in component c
ence Methods 250 (2015) 47–63

• Z
J
(x): the z-score of x along dimension J (channels, time or trials),

i.e. mean subtracted and divided by standard deviation across J
elements of x

For each measure presented below, a threshold for rejection
has to be set. SASICA allows setting either an absolute threshold
entered by the user, or an adaptive threshold that selects com-
ponents whose value on a given measure is beyond a number of
standard deviations away from the average of all components for
the current dataset. For most measures, we set the default threshold
to 2 standard deviations. This adaptive threshold helps accounting
for the fact that variable ranges of measures occur across differ-
ent datasets, as illustrated in Fig. 7. Indeed, subtle differences in
preprocessing and the amount of available data in a given experi-
ment lead to large differences in measures computed on ICs. For
channel correlation measures (vertical and horizontal EOG, and
designated bad channels), we recommend using a more conser-
vative threshold of 4 standard deviations from the mean. Indeed,
the vast majority of components is very weakly correlated with
specific channels, and most components correlate with r values
close to zero. This is shown in Fig. 7 in the two  top left panels,
“CorrV” and “CorrH” for SASICA-computed correlation with verti-
cal and horizontal EOG channels and bottom right panel “EOGCorr”
for the FASTER-computed maximal correlation with any EOG  chan-
nel. Two standard deviations away from average in these measures
is still a fairly low value (around 0.2–0.25 in the training datasets),
for which correlation is still rather unspecific to ocular artifacts.

Please note that in the plots in Figs. 1–6 (and in general in prop-
erty plots produced by SASICA), all measures are scaled so that
higher bars mean that a component is more likely to be selected
by a given measure. For the autocorrelation, and signal to noise
ratio measures, the scales are inverted because lower values mean
that a given component is more likely to be rejected. Higher bars
for these two  measures thus mean lower values of Autocorrelation
or SNR, hence the LoAC and LoSNR abbreviations used in figures.

2.2.2.1. Autocorrelation. Components reflecting brain activity are
usually strongly autocorrelated. This means that the level of sig-
nal in a component at any time point usually correlates with the
signal of this same component a few ms  before. To the contrary,
noisy components like muscle components tend to show low auto-
correlation. This measure computes the autocorrelation of each
component at the specified lag in ms  and suggests rejection if
the autocorrelation value is below the specified threshold. Inter-
estingly, the same measure is also used in a recently developed
alternative method to ICA for artifact correction using canonical
correlation analysis to detect muscle components and correct for
muscle artifacts (Clercq et al., 2006; Vos et al., 2010).

Autocorrelation is defined at lag l for component c by:

Ac =
T∑

t=l

xc(t) × xc(t − l)

Default lag is set to 20 ms,  which showed the best match with
expert classifications in the training datasets. This measure serves
a similar goal as the Hurst Exponent (HE) measure of FASTER (see
Section 2.3).

2.2.2.2. Focal topography. Components reflecting brain activity
rarely affect only one electrode. Components that load mostly onto
one electrode are thus likely to reflect artifacts (bad channel or

rare events), rather than brain activity. We  measure focality of the
topographies by computing the z-score of the ICA inverse weights
across channels. Components that have a channel with its maxi-
mum absolute weight above threshold are considered focal.

https://github.com/dnacombo/SASICA
http://sccn.ucsd.edu/wiki/EEGLAB_Plugins
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Fig. 6. Rare events. Example components capturing rare events and their properties, as shown by SASICA. (A) Properties to pay particular attention to in order to determine
if  a component captures activity of a rare event. (B) Example rare event component, where the event occurred at one electrode. This component thus qualifies for the Bad
channel component category as well. (C) Example rare event component, where the event occurred at many electrodes.

Fig. 7. Measure ranges vary with recording and preprocessing settings.
Each panel shows one measure for individual components of the 8 training datasets, and two  exemplar test datasets. Each dot represents one component. Variability within
d triking
d 2 does
t
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atasets is represented with overlaid boxplots. Variability across datasets is most s
ataset  in order to show variability of horizontal EOG (CorrH) measure, which SUBJ 

itles  correspond to each measure and are listed in Table 1.

Focal measure of component c:

c = max
n

(
Z
N

(Wc(n))
)

here maxn (·) denotes maximum across channels. This measure
erves a similar goal as the Spatial Kurtosis (SK) measure of FASTER,
nd the Generic Discontinuity Spatial Feature (GDSF) of ADJUST,
see Section 2.3).
.2.2.3. Focal trial activity. Artifacts can occur with extremely large
mplitude but on rare occasions. Thus, the same strategy as for
he focal topography measure above can be applied to detect rare
vents, but instead of computing the z-score of ICA inverse weights
 across different experiments. Note that we show SUBJ 1 and SUBJ 3 in the testing
 not have because the electrode is absent from that dataset. Abbreviations in panel

across channels, we  compute the z-score of the range of ICs’ activity
across trials (the range is defined here as the amplitude difference
between the maximum and minimum points for a given trial). Com-
ponents that have trials above threshold are considered to reflect
focal trial activity.

Focal trial activity of component c:

FTc = max
k

(
Z

(
max

t
(x(c, k, t)) − min

t
(x(c, k, t))

))

K

where maxk(·) and maxt(·) denotes maximum across trials and
time points, respectively. This measure serves a similar goal as the
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aximum Epoch Variance (MEV), and the Temporal Kurtosis meas-
res of ADJUST (see Section 2.3).

.2.2.4. Correlation with channels. Channels strongly contaminated
y artifacts can often be identified early, either by design (EOG, elec-
romyogram or electrocardiogram channels) or during recording
nd preprocessing of the data (channels with strong electrical arti-
acts due to misconnection or line noise). Often, these artifacts are
aptured in a single component of the ICA solution and this compo-
ent is highly correlated with the channel in question. We  measure
he correlation of specific channels (EOGs or any other channel)
ith all components and set a threshold for rejection. Using cor-

elation as a way  to detect components contaminated with EOG
ctivity has been used previously (e.g. Joyce et al., 2004; Okada
t al., 2007) and a measure of maximal correlation with EOGs is
mplemented in FASTER (see below).

SASICA can take three types of channels to compute correlation
ith ICs. It has two fields for horizontal and vertical EOG, as well

s one field for other “bad channels”. If two channels are entered
or either vertical or horizontal EOGs, the difference of EOG chan-
els is automatically computed. This is meant to increase the signal
o noise ratio of the EOG signal before correlating it with ICs (see
ection 3).

.2.2.5. Additional measures. We  provide here additional measures
hat could be used flexibly to select components, either for rejec-
ion, or for further processing. We  do not recommend using these

easures to routinely reject artifact ICs.
2.2.2.5.1. Weak signal to noise ratio. In event related potential

ERP) studies, it may  be useful to select components with high activ-
ty in a specific time window compared to a baseline time window.

e provide a measure to do this. In this measure, we  take the
tandard deviation across trials of activity (z-scored over the whole
ime period) averaged in a period of interest (classically after a stim-
lus) and in a baseline period (classically before the stimulus) and
ompute the ratio of these two values. If activity increases after
timulus, this ratio is expected to raise, and if it passes a thresh-
ld set by the user, the component will be selected. This measure is
ell suited to identify components showing weak or strong evoked

ctivity according to needs.
2.2.2.5.2. High residual variance of dipole model. Neural sources

s isolated with ICA are often well modeled by a single dipole
r a pair of dipoles (Delorme et al., 2012). A simple measure of
he goodness of fit of dipoles is the residual variance, i.e. propor-
ion of variance that remains in the data after subtracting the data

odeled by the dipole. Dipole fitting is performed using the DIP-
IT2 plugin, provided by default with EEGLAB. A threshold of 15%
s set by default in EEGLAB, which we use by default in SASICA if
his measure is selected. Components with more residual variance
han threshold will be selected.

.3. Other automated selection tools

There are several other plugins for EEGLAB that compute sta-
istical properties of ICs and classify components for rejection. We
nclude some of them in SASICA in order to improve classification
erformance.

FASTER (Fully Automated Statistical Thresholding for EEG arti-
act Rejection; Nolan et al., 2010) is a complete suite of automatic
reprocessing routines that performs the entire preprocessing
ipeline, from filtering to grand average (i.e. combining several sub-

ects in one average dataset). It allows controlling what steps to

ndertake and setting thresholds and parameters for every opera-
ion it performs. For component rejection, as already mentioned,
t uses correlation with EOG channels (EOGCorr), Spatial Kurto-
is (SK), Power Spectrum Slope (SpecSl), Hurst Exponent (HE), and
ence Methods 250 (2015) 47–63

the Median Gradient (MedGrad) of component time-courses. By
default, any component whose value on one specific measure is
beyond 3 standard deviations from the average is selected for
rejection. We  have implemented the FASTER ICA artifact selection
routines in SASICA to allow users to make use of these measures
and classifications in addition to SASICA’s own measures.

ADJUST (Automatic EEG artifact Detection based on the Joint Use
of Spatial and Temporal features; Mognon et al., 2011) uses elab-
orate detection algorithms based on temporal and spatial filters
to identify components reflecting eye movement artifacts (Blinks,
Horizontal and Vertical Eye Movements) and Generic Disconti-
nuities. Noteworthy, it combines explicitly spatial and temporal
features to classify components into these four categories. For
instance, blink components are detected when a component has a
high temporal kurtosis (TK), larger absolute mean inverse weights
at frontal electrodes than at posterior electrodes (Spatial Average
Difference, SAD), the same sign on left and right portions of the
electrode cap, and higher signal variance at frontal than at poste-
rior scalp regions (Spatial Variance Difference, SVD). Other decision
algorithms are detailed in the original paper (Mognon et al., 2011).
It offers a convenient way  to examine the results using EEGLAB’s
native visualization. We  have implemented ADJUST’s algorithms
within SASICA to allow users to make use of these measures and
classifications in addition to SASICA’s own  measures. Note that
because the decision algorithm of ADJUST combines multiple fea-
tures to classify components, sometimes a given component may
show a high value of one feature, but not others required to clas-
sify it as artifactual (e.g. the three components shown in Fig. 2). In
SASICA, the bars showing computed feature values are displayed
in color only when these measures pass threshold and collectively
trigger rejection by ADJUST (e.g. Fig. 3B, C, E and H).

MARA (Multiple Artifact Rejection Algorithm; Winkler et al.,
2011) is a plugin that combines several measurements in an
automated way using a machine learning approach to classify com-
ponents as artifacts. The measures it uses are Current Density Norm
(measure of the smoothness of the topographies), Range Within
Pattern (range of amplitudes in the inverse weight matrix), Mean
Local Skewness, power at 8–13 Hz, a parameter of the Fit of the
Power Spectrum with a 1/F function, as well as the error or this fit
(see original paper for details). These features are combined in an
automated way using a support vector machine algorithm.

CORRMAP is a tool specifically designed to detect ocular and car-
diac artifacts by using the level of correlation between IC maps and
a template map  chosen by the user. It conveniently uses the STUDY
feature of EEGLAB (Delorme et al., 2011), which allows processing
a whole group of datasets at once. This tool only allows selection
of components based on a user-defined template and thus is only
suited for artifacts matching it (typically eye and heartbeat artifact
components).

2.4. Validation

We  validated our approach by first evaluating how reliably
experimenters familiar with ICA would classify components in
each of the five categories (blinks, saccades, muscle, isolated bad
channel or rare events). To do this, we  compared the ratings pro-
vided by experimenters, with consensual ratings obtained from
expert ICA experimenters. Second, we  implemented all meth-
ods in SASICA and evaluated them against the same consensual
expert classifications in a “training” set of datasets. Finally, we
used a different “test” set of 13 datasets to validate SASICA’s

algorithms (using default settings determined on the training
datasets) against new data which had not been used to develop
the toolbox. This approach allowed us to develop a selection
method robust to many different preprocessing settings, and to
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est performance on a more homogenous set of data from a single
tudy.

.4.1. Datasets
Technical specifications, experimental settings, and subjects’

emographics are shown in Table 2. For all datasets, a standard
reprocessing procedure was used: (1) visual inspection of the raw
ignal to exclude bad portions of data, (2) re-referencing, down-
ampling and filtering as mentioned in Table 2, (3) epoching, (4)
restimulus baseline removal, (5) ICA using the extended infomax
lgorithm (from EEGLAB).

.4.2. Task and measurements
Five experimenters familiar with ICA (hereafter referred to as

sers) reviewed all ICs for each of the eight training datasets using
he manual EEGLAB tool (Tools > Select components by map). This
ool presents the topographical maps of all components in a large
gure (similar to Fig. 1C) and the user is invited to examine each
omponent to decide whether or not it should be rejected. Click-
ng on a button above each component pops up a window showing
omponent properties (topography, single trial time courses, and
ower spectrum). For the present task, we asked users to give
reasons” for their decision to discard a given component. Rea-
ons could be any of ‘Blink’, ‘Saccade’, ‘Muscle’, ‘Isolated channel’,
Few trials’ (to identify rare events), or ‘Other’. Experimenters were
iven instructions describing each type of artifact as in Sections
.1.2–2.1.7.

Three expert users (including authors MC  and NB) examined the
ight test datasets using the same manual EEGLAB tools. In addi-
ion to the above mentioned reasons, these expert users were also
iven the possibility to classify components as “Neural”, when they
nequivocally matched a neural pattern, as described in Section
.1.1. After the experts rated all training datasets independently,
hey sat together and revised their ratings until they reached con-
ensus. Components for which no consensus could be reached were
lassified as “Other”. These classifications are used as a reference
o evaluate the responses of the five experimenters and as ground
ruth for the hit rate and false alarm rate measures described below.
he experts have extensive practice with ICA and complied strictly
ith the criteria described in Section 2.1 for their classifications.

Finally, two experts (including author MC)  examined and con-
ensually classified the 920 components of the 13 test datasets
sing the same procedure. These classifications are used here to
urther evaluate all automated methods using a larger body of data.

.4.3. Agreement measures
We  measured classification agreement between the five expe-

imenters and the consensual ratings of the three experts for
he training datasets for each artifact category and classification

ethod separately. While considering a given method and a given
ategory, components were considered hits, misses, or false alarms,
aking the experts’ rejections in that category as ground truth. For
nstance, for evaluating SASICA’s focal topography measure for the
etection of artifacts from the muscle category, a given component
as considered a hit if the experts classified it as “muscle”, and the

ocal topography measure for that component was above thresh-
ld. We  measured in this way the overall agreement between users
nd the experts in the test datasets, and between each individual
easure of the three automated tools tested and the experts. We

eport accordingly hit rate and false alarm rate for all measures.
e also computed standard signal detection measures (sensitivity

’ and criterion c; Macmillan and Creelman, 2004) to distinguish

ensitivity from bias in selections.

We also used Krippendorff’s Alpha to measure inter-rater
eliability on the training datasets. Krippendorff’s Alpha is pre-
erred over more popular measurements such as percentage of Ta
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greement or Cohen’s Kappa, because it accounts for chance agree-
ent and for disagreement in ratings. It is a general measure

hat includes several other reliability measures as special cases
Hayes and Krippendorff, 2007). It is equal to 0 in case of com-
lete unreliability (random classifications here), and to 1 for perfect
eliability (all raters fully agree). We  used Krippendorff’s Alpha
o measure agreement between experts (individual classifications
efore consensus) and between users. We  also computed the 95%
onfidence intervals of Krippendorff’s Alpha using 500 bootstrap
esamples.

Finally, we measured the ratio of the variance of the EEG sig-
al captured in correctly rejected components to the variance of
ll components selected for rejections by the experts (i.e. the vari-
nce explained by hits as defined above divided by the variance
xplained by hits and misses), and the ratio of falsely rejected
ariance to the variance of all components classified either as “Neu-
al” or as “Other” by the experts (i.e. the variance explained by
alse alarms divided by the variance of false alarms and correct
ejections), to further evaluate performance of all methods. These
easures indicate how much of the variance rejected by experts
as correctly rejected by automated methods and users and how
uch variance kept by experts was wrongly rejected by automated
ethods.

. Results

In the following, we examine agreement in rejections by
xperimenters, then each of the reviewed automatic methods in
omparison to the consensual artifact classifications by the experts
n the training datasets. We  also report how automated meth-
ds compared to expert classifications on the test datasets. Table 3
ummarizes the results.

Overall, blink and saccade IC classifications are the most agreed
pon, followed by muscle IC classifications with somewhat lower
ccuracy. Bad channels and rare event IC classification is less reli-
ble with automated methods, but we notice that human observers
lso tend to disagree most on these types of artifact ICs. The overall
mount of variance correctly and wrongly rejected by all meth-
ds is shown in Table 3, revealing that a non-negligible portion
f variance gets misclassified by all automated methods. A further
reakdown of rejections along with the amount of signal variance

nvolved by artifact category and automated measure for training
nd test datasets is shown in Supplementary Fig. 1.

In the following, we examine classifications in each artifact cat-
gory separately.

.1. Reviewing duration, reliability of experts and users

The four users and three experts took in total between 1h30
nd 4h48 to review all 8 training datasets. The two experts who
eviewed the thirteen test datasets took 1h30 in total.

Krippendorff’s Alpha showed a similar level of agreement
etween experts (Alpha confidence interval [0.42–0.51] on initial
lassifications, before consensus was reached), and between regu-
ar users (Alpha confidence interval [0.43–0.50]).

.2. Neural components

Components classified as Neural by the experts were rarely
elected for rejection by users (note that the users were not offered
he possibility to classify components as of Neural origin, but

mongst all the components classified as Neural by the experts,
nly a few were selected as coming from one of the artifact cate-
ories by a minority of users). Users falsely classified a few neural
omponents that were highly similar to blink components as such
ence Methods 250 (2015) 47–63

(see Section 3.3), and some users also classified some particularly
focal neural components as isolated channels (Fig. 5E).

SASICA misclassified one neural component in the training
datasets because of a particularly low autocorrelation. This com-
ponent was part of a dataset where no high-pass filter was applied
(see Table 2), and where all components were highly autocorre-
lated (dataset nos. 7 and 8, Fig. 7) due to slow drifts in the data.
To avoid such misclassifications, a rapid look at the summary fig-
ure displayed by SASICA (similar to Fig. 1B), showing all SASICA
measures, would reveal a particularly high level of autocorrelation
in this dataset, which should alert an observant experimenter to
further examine this measure. It is then up to the experimenter
to decide if such a highly saturated measure is useful in this sit-
uation (Autocorrelation for this dataset is 0.99 ± .02). ADJUST and
FASTER mistook two components of neural origin for blinks (see
Section 3.3). In addition, FASTER mistook two  neural components
(e.g. Fig. 2C) for artifacts because the MedGrad measure reached
exceptional values that passed threshold.

In the test datasets, a number of components with large inverse
weights on frontal channels were misclassified as blink compo-
nents, either by ADJUST or FASTER. Two neural components were
also misclassified by SASICA for capturing a focal topography, and
for low autocorrelation.

3.3. Blinks

Users rejected blink components very consistently. They cor-
rectly identified 89% of the blink components labeled by the experts
(Table 3). There were only a few such components in each dataset.
Components on Fig. 3 B and C were correctly identified by users.
Automated methods identified most blink components (Table 3),
but missed a few and mistook a few neural components for blinks
(see below). Properties that may  lead to the misidentification of
non-artifactual components for ocular components are listed in
Fig. 3G for reference.

Interestingly, two components in training dataset nos. 3 and
4 (illustrated in Fig. 8, for dataset no. 4, and Fig. 3H, for dataset
no. 3) were mistaken for eye blinks due to their topography by
some users and also mistaken for artifacts by ADJUST and FASTER.
Indeed, the topography for these components is close to typical
blink topographies (Fig. 3B and C). However, because two EOG elec-
trodes were placed under the eyes in these datasets, actual eye blink
topographies look very different in these datasets. In the actual
blink component found for these datasets, there was  an abrupt
polarity reversal at the most anterior sites (Figs. 8 and 3B). As shown
in Fig. 8, the falsely identified components actually capture strong
evoked activity around 300 to 700 ms  at frontal sites. We  illustrate
the effect of subtracting this non-blink component on the evoked
potential at a frontal channel (Fpz) in dataset no. 4 in Fig. 8. Mis-
takenly subtracting the wrong component in this case may  lead to
the complete removal of an important part of the ERP.

ADJUST misdetected these components because it is designed to
detect blink components by matching component topographies to a
template with large difference in inverse weights between anterior
and posterior sites (SAD measure). Although ADJUST additionally
requires that the amplitude variance be larger at frontal than at
posterior sites (SVD measure), this control measure did not pre-
vent misclassification of this component. Nevertheless, ADJUST’s
performance at detecting blink components was remarkably good
and eventually surpassed both SASICA and FASTER with the test
datasets, where only two EOG electrodes were used. FASTER also
computes the maximal correlation of component time courses with

all EOG electrodes, and considers any component whose maximal
correlation is above threshold as artifactual. The falsely detected
components in dataset nos. 3 and 4 correlated relatively strongly
with one or more EOG channels and were thus misclassified by
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Table  3
Performance of all users and automated methods in comparison with expert consensus classifications. HR and FAR refer to average Hit and False Alarm Rates across users for
each  measure, with respect to expert classifications. The “Neural” row has only a false alarm cell because users and automated methods do not explicitly classify a component
as  “Neural”. Thus only incorrect selection of a neural component as artefactual can be counted here. Overall performance is measured with respect to classification in any
of  the artifact categories (i.e. not “Other” or “Neural”). The “Var(Overall)” row corresponds to the amount of variance accounted for by the corresponding components.
Performance above 20% is highlighted in light gray, and above 50% in dark gray.
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Experts HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
Blinks 89.3 0.4 5.4 2.4 0.0 12.3 0.0 12.3 0.0 7.1 100.0 1.8 0.0 5.6 0.0 2.5 14.3 5.3 0.0 1.2 85.7 0.3 71.4 1.6 0.0 7.5 0.0 2.7 0.0 1.3 14.3 0.9 71.4 2.4

Saccades 8.1 1.1 80.1 0.4 0.0 12.4 0.7 12.5 2.2 7.1 58.8 1.4 0.0 5.7 0.0 2.6 5.9 5.4 23.5 0.6 0.0 1.2 17.6 2.0 0.0 7.7 0.0 2.7 0.0 1.4 11.8 0.8 58.8 1.7
Muscle 0.0 1.4 0.0 2.6 78.9 6.4 5.3 12.8 0.9 7.5 0.0 3.0 42.6 2.4 3.7 2.4 0.0 5.9 0.0 1.3 0.0 1.3 0.0 2.5 9.3 7.3 16.7 1.4 0.0 1.4 3.7 0.8 0.0 3.3

Bad Channel 0.0 1.4 0.0 2.6 5.8 12.7 68.1 7.0 9.7 6.7 0.0 3.0 1.7 5.9 19.0 1.0 6.9 5.3 1.7 1.1 1.7 1.1 3.4 2.2 48.3 3.7 0.0 2.9 12.1 0.3 0.0 1.1 0.0 3.4
Bad Trials 0.0 1.4 0.0 2.6 4.5 12.8 23.2 11.2 34.2 4.6 1.8 2.9 0.0 6.1 3.6 2.4 37.5 2.6 3.6 1.0 1.8 1.1 1.8 2.4 16.1 6.7 0.0 2.9 3.6 1.1 1.8 1.0 1.8 3.2

Neural 1.1 0.5 1.3 0.7 0.1 0.0 1.0 0.0 0.0 0.0 0.0 2.0 0.0 2.9 0.0 0.0 2.9

Overall
Var(Overall)

Sensitivity and criterion

Test datasets
Experts HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR

Blinks 88.2 1.0 0.0 4.0 0.0 4.3 5.9 5.6 0.0 1.9 88.2 4.4 94.1 2.7 29.4 7.4 23.5 2.0 0.0 2.5 0.0 0.3 64.7 1.6
Saccades 22.2 2.4 0.0 4.0 0.0 4.3 33.3 5.4 88.9 1.0 11.1 5.9 11.1 4.3 11.1 7.8 0.0 2.4 0.0 2.5 0.0 0.3 33.3 2.4

Muscle 0.0 3.2 16.5 1.1 13.5 2.1 2.4 6.4 1.2 2.0 11.8 4.7 4.1 4.4 21.8 4.7 4.7 1.9 5.3 1.9 0.0 0.4 0.0 3.3
Bad Channel 14.3 2.4 7.1 3.9 57.1 3.4 7.1 5.6 0.0 1.9 50.0 5.3 14.3 4.2 64.3 7.0 0.0 2.4 42.9 1.9 0.0 0.3 14.3 2.5

Bad Trials 8.3 2.5 4.2 3.9 12.5 4.0 54.2 4.4 8.3 1.7 8.3 5.9 0.0 4.5 20.8 7.5 0.0 2.5 8.3 2.3 8.3 0.1 8.3 2.6
Neural 0.2 0.2 0.2 0.7 0.0 0.7 1.7 0.0 1.5 1.0 0.0 0.7

Overall
Var(Overall)

Sensitivity and criterion
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ASTER. Overall, these misclassifications illustrate the difficulty of
reating a fully automated method, and emphasize the need for
areful examination of component properties.

SASICA uses correlation with EOG electrodes and, if two
lectrodes are entered, computes the difference between these
lectrodes before the correlation with components’ activities. This
onsiderably increases the power to detect eye movements accu-
ately. In the examples above, EOG electrodes were placed above
nd below the eyes and were both submitted to SASICA. The dif-
erence between these two electrodes correlated with neither of
he two falsely identified components. At the default correlation
hreshold used (4 standard deviations away from mean), SASICA

issed no blink component and misclassified one non-ocular com-
onent (classified as capturing activity of a bad trial by experts) due
o high correlation with one EOG channel.

Confirming the above results in the test datasets, similar mis-
lassifications of blink components also occurred. ADJUST and
ASTER misclassified seven components for the same reason
escribed above: components with strong inverse weight at frontal
lectrodes but a clear neural topography, power spectrum and time
ourse were mistaken for blink or vertical eye movement compo-
ents. SASICA on the other hand missed 3 blink components. This
an be explained by the fact that only two EOG electrodes were
resent in these datasets (one below the right eye and one next to
he lateral canthus of the left eye). Sensitivity could probably be
mproved by using bipolar montages around the eyes, which are
xploited by SASICA’s difference operation mentioned above. It is
hus recommended to use several EOG channels around the eyes
nd combine them in SASICA to detect eye movement artifacts most
ccurately.

In situations where EOG electrodes cannot be used (e.g. sleep

tudies, or long term EEG recordings from epileptic patients), a
ethod that does not rely on EOGs is preferable. In this case, the
DJUST eye movement detector that does not resort to EOG elec-

rodes is recommended.
3.4. Saccades

Users correctly identified saccade components 80% of the time
in the training datasets. Since in some experiments from which
these datasets are drawn, subjects were asked to maintain fixation,
there were sometimes very few (if any) such components in each
dataset. Properties that may lead to the misidentification of non
artifactual components for ocular components are listed in Fig. 3G
for reference.

Automated methods mistook some ambiguous components for
saccades in the training datasets. For instance, SASICA and FASTER,
using correlation with EOG electrodes, mistook the component
illustrated in Fig. 3I for an ocular component. This component does
not isolate eye movement activity specifically and should not be
discarded. Its topography includes non-negligible inverse weight
at central channels, which are unlikely to reflect ocular artifacts.
Furthermore, this component comes from a dataset where EOG
electrodes were registered and rendered on the topographies. If this
component was  related to eye movement artifacts, it would thus
show a typical polarity reversal, as shown in Fig. 3E, for instance.
Subtracting this component may  thus remove signal not directly
related to the ocular artifact.

In the test datasets there was a total of only 9 saccade com-
ponents identified by the experts. SASICA could detect two, and
FASTER three of these based on correlation with EOG electrodes,
while ADJUST could detect eight of them without using correla-
tion with EOGs. Like for blink components, the lack of several EOG
electrodes around the eyes in these datasets severely impaired per-
formance of detection methods based on correlation with EOGs.

Another example of misclassification and its consequences on
the ERP is shown in Fig. 9. The data comes from dataset no. 7 of the

training set, recorded during a task where subjects had to perform
large saccades on almost every trial. In this case (and for dataset
no. 8 from the same experiment), due to this unusual task that
entails strong recurring artifacts on every trial, the returned ICA
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Fig. 8. Mistaken eye blink component subtraction. Results of removing components
wrongly identified as blink components in Fig. 3. We take as an example a represen-
tative dataset (no. 4). (A) Blink component. (B) Neural component whose topography
resembles that of a classical blink component with strong weight at frontal chan-
nels. (C) Time course of the event related potential across all trials at electrode Fpz in
this dataset before any component subtraction (blue), after subtraction of the blink
component in (A) (green), and after subtraction of the non-blink component in (B)
(
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Fig. 9. Complete removal of saccade and blink components. In some cases, artifacts
may  not have all of the properties that automated methods expect. In the case of
dataset no. 7 here, where subjects had to perform a large saccade on almost every
trial,  several components were clearly identified by the expert observers as saccadic
artifacts (IC1, 2 and 4), but some automated methods failed to identify some of these
as  artifactual components (see text for reasons). The time courses at the bottom
red). The latter operation wipes out entirely a strong evoked activity that is unre-
ated to blinks. (For interpretation of the references to color in this figure legend,
he  reader is referred to the web  version of this article.)

olution contains several saccade components of similar topogra-
hy that seem to capture saccades in opposite directions occurring
n almost every trial (Fig. 9A and B). ADJUST did not detect any of
hese saccade components. This is due to the fact that the MEV  mea-
ure, required to classify a component as capturing eye movements,
ailed to reach rejection threshold for these components. FASTER
nd SASICA identified the saccadic components in Fig. 9A and B,
ut failed to identify the one in Fig. 9D, whose correlation with
OGs was below threshold. This example highlights again how fully
utomated methods may  lead to inappropriate selections, and the
eed to carefully examine rejections, in particular when unusually
trong activities are expected to occur (like in this saccade task).

.5. Muscle

Users identified 79% of components categorized as muscle com-
onents by the experts in the training datasets. Fig. 4B and C shows
wo typical muscle components identified by users and experts.
ig. 4E and F shows components that were wrongly categorized
s pure muscle components by some users. Users often mistook
omponents with isolated channels in the periphery of the cap for

uscle components, even if these did not show the steady noise

ctivity pattern characteristic of muscle activity. Some properties
hat may  lead to the misidentification of non-artifactual compo-
ents as ocular components are listed in Fig. 4D for reference.
show the ERP at electrode Fpz before and after removal of the blink (IC3, correctly
identified by all methods) and saccade (IC1, 2 and 4) components. In this case, only
the  expert users identified all four components.

In SASICA, the autocorrelation measure captured 43% of com-
ponents classified as coming from muscle activity by the experts
in the training datasets. ADJUST does not attempt to select muscle
components. FASTER’s median gradient measure that is meant to
detect noisy components captured 17% of the muscle components
selected by the experts in these datasets (see Table 3).

Fig. 4E and F shows examples of mismatches between users,
automated methods, and experts in the training datasets. Fig. 4E

shows a component which in spite of a clearly focal topography,
does not show the usual noisy time courses characteristic of tonic
muscular activity and thus fails to qualify for being a muscle compo-
nent. Fig. 4F shows an example component that the experts did not
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wants to study at the channel level is well isolated in components
that are accurately modeled by a single dipole and not at all by any
other type of component, and we strongly advise experimenters to
M. Chaumon et al. / Journal of Ne

lassify as a muscle component but whose time course had a very
ow autocorrelation and high median gradient. This component was
onsidered by the experts as capturing a few high amplitude events
due to a few high amplitude points in an otherwise relatively low
mplitude ERP image), and thus did not qualify for being purely
uscle-related component.
In the test datasets, the Autocorrelation measure achieved only

6% sensitivity and none of FASTER’s measures identified more than
% of the muscle components. Surprisingly, ADJUST’s generic dis-
ontinuity detector achieved 22% of detection of these components
see Table 3).

.6. Bad channels

Users categorized only 68% of the components identified by the
xperts as coming from a bad channel. Fig. 5 B and C illustrates
omponents capturing bad channels that were detected by users
nd at least one of the automated methods tested. Fig. 5E illus-
rates components that some users mistook for a bad channel,
lthough it showed a clear evoked response and its topography
ctually spread across more than one channel. Fig. 5F illustrates
he overlap between rare events and bad channels, since this bad
hannel, being active for only a short period of time, was  classified
s reflecting activity of a few trials by the experts.

All automated methods tested showed poor results with bad
hannels. All detected less than half of the components identified
y the experts in the training datasets (see Table 3). It should be
oted that classification of these components was  also less con-
ensual amongst users. When bad channels are known in advance,
ASICA allows the experimenter to search for components with
articularly high correlation with known bad channels. The exam-
le component of Fig. 5B and C could be detected by SASICA’s focal
omponent measure and the component in Fig. 5B was also iden-
ified due to its high correlation with a known bad channel in the
ataset.

Interestingly, up to 64% of bad channels in the test datasets
ere correctly identified by ADJUST’s Generic Discontinuity detec-

or (and surprisingly 50% by the vertical eye movement detector).
ith these datasets, FASTER’s Spatial Kurtosis and SASICA’s Focal

omponent measures performed also better than with the training
atasets (an increase of more than 30% correct detections in both
ases, see Table 3). Generally, this high variability in automated
easures performance highlights the unreliability of all methods

o detect bad channels.

.7. Rare events

Users identified components capturing activity of a few trials
ith least accuracy and identified only 34% of the components iden-

ified by the expert in this category. Again, the crosstalk of this
ategory with the bad channel category described above is evident
y the fact that users also categorized as bad channels some com-
onents that the experts classified as capturing activity from a few
rials. Automated methods performed generally poorly with these
omponents, with SASICA’s focal trial measure identifying 37% of
he components labeled as few trials by the expert and all other

ethods identifying at most 16% of these components.
In the test datasets, automated methods performed slightly bet-

er, SASICA with 54% correct detections with its Focal Trial measure,
nd ADJUST’s Generic discontinuity detector performing at 21%
orrect detections, FASTER not reaching more than 8% detections.
.8. Other

The “Other” category was used by the experts whenever a
omponent did not capture just one type of artifact, but rather
ence Methods 250 (2015) 47–63 61

a mixture. It is important to note that these components should
generally not be rejected. They reflect mixtures of signals, some
of which undoubtedly are of neural origin, since many of these
ambiguous components show various forms of event related
responses.

3.9. Additional measures

Additional measures may  be used in specific situations. We
provide these measures here for completeness and recommend
using them only in specific situations where e.g. positive selec-
tion of interesting components is wished, rather for systematically
discarding artifact components.

3.9.1. Signal to noise ratio
Signal to noise ratio identifies components with little or no

evoked activity. In some situations, it may  be useful to select only
components that contain clear activity evoked by some stimulus.
In these cases, users may  want to only keep components in which
the ratio between pre- and post-stimulus activity is large enough.
This option is inactive by default in SASICA because we  think it
should be used only in some specific cases, such as performing a
component specific analysis on components showing strong event
related responses. To illustrate the method, we  computed signal
to noise ratio in all datasets using 500 ms  post- vs. 500 ms  pre-
stimulus activity as period of interest and baseline, respectively,
and show the values in all figures. All tasks for all datasets used
here had a stimulus event at time 0.

3.9.2. Residual variance of dipole fit
Some neural sources are well modeled by a single dipole or a

pair of dipoles symmetrically located in the two hemispheres. It
may  thus be useful to select only ICs that are well approximated
by a dipolar source. EEGLAB allows estimating the location of the
IC sources by means of dipole fitting. When performing analyses in
component space, EEGLAB suggests working only with ICs whose
residual variance after subtraction of the best fitting dipolar model
is below a certain threshold. We added this feature in the plugin
to help select ICs based on their dipolar fit and perform analyses at
the component level.

However, we do not recommend cleaning data with this mea-
sure before performing channel based analysis. Indeed, as we have
already mentioned, not all components returned by ICA reflect pure
neural or artifact activity and usually a lot of them actually capture a
mixture of signals that are statistically independent from each other
but do not necessarily map  onto a pure neural or artifactual process.
At least three reasons exist for this. First, physiological artifacts that
occur concomitantly with neural processes (e.g. blinks or saccades)
should at least in principle be captured together with these neu-
ral processes in individual components. Second, it is often the case
that clearly artifactual components show some evoked responses
to experimental events (see e.g. muscle artifact in Fig. 4C). Finally,
spread-out populations of neurons that respond in synchrony are
not well modeled by dipoles although they do capture potentially
important neural activity.

It is thus a risky bet to consider that all the neural activity one
think carefully before using this method to reject all components
passing the default threshold of 15% residual variance. This feature
is retained in SASICA to facilitate characterization of components
using this method in future research.
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.10. Overall rejection performance

Table 3 shows overall performance of all methods at rejecting
rtifact components while keeping non-artifact components (clas-
ified as Neural or Other by the experts). Sensitivity is far from
erfect for both the training and test datasets, showing that all
ethods are prone to error. When turning to individual measures,

owever, automated methods can be very good at selecting specific
ypes of artifacts, and all methods show very low levels of false
election of neural components (“Neural” row in Table 3). This is
mportant because it shows that these methods, although they are
ot perfect at detecting artifacts, generally rarely mistake neural
omponents for artifacts (but see Figs. 8 and 9).

Table 3 also shows that the amount of variance correctly and
rongly attributed to artifacts by users and automated methods

aries across methods. Users classified only 64.6% of artifact vari-
nce as such, and mistook 13.4% of “Neural” and “Other” variance
or artifacts. Automated methods also missed an important portion
f artifact variance, but due to a more conservative criterion (more
egative c), were more sparing of non-artifact variance. Perfor-
ance of automated methods on the test datasets was  overall

oorer than on the training datasets. A detailed breakdown of
ariance repartition across rejection categories is shown in Sup-
lementary Fig. 1.

. Discussion

In this paper, we have reviewed five types of typical EEG arti-
acts isolated by ICA and several measures currently offered by
utomated methods to detect these types of artifacts. We  intro-
uce the SASICA plugin for the EEGLAB toolbox to help users select
rtifactual ICs. We  evaluated several methods and algorithms for
etecting in particular blinks, saccades, muscle noise, bad chan-
els, and rare events in 8 training datasets using different setups

rom our lab, as well as a 13 dataset test study. Overall, all methods
manual, or automatic) were not perfectly consistent, showing that
here are inherent limitations to the precision of artifact selection
sing ICA. Using fully automated methods, there is to date no way
o guarantee that no neural component will be rejected. Important

isclassifications occurred with all automated methods that had a
arge impact on ERPs (Figs. 8 and 9). We  thus emphasize here the
mportance of first defining precisely the goals of artifact correction
blink, muscle, bad channel removal), prior to attempting artifact
orrection with ICA. Second, we recommend using SASICA and the
ppropriate measures to select potentially artifactual components.
ith the help of a rapid and convenient overview of diagnostic
easures, SASICA allows users to make informed and efficient deci-

ions based on objective criteria. Taking this approach of using
tatistical measures not to make decisions, but to guide the exper-
menter’s decision is in our view essential to efficiently remove
EG artifacts using ICA while avoiding mistakenly removing neural
ignals from the data.

SASICA provides suggestions for ICs to reject along with infor-
ation about the decisive criteria for each suggestion. The global

iew of all components offered by SASICA (Fig. 1B and C), which
llows rapid reviewing of all components is an advantage over
anual rejections and other automated methods. Furthermore, the

ew measures introduced with this tool help refine selection in
ome critical situations. Finally, SASICA can also be easily used to
elect components for other purposes than rejection via additional
easurements (e.g. signal to noise ratio and residual variance of
ipole fits). A command line interface allows e.g. easy selection of
omponents with given levels of correlation with specific channels,
r selection of components that have a particularly strong evoked
esponse.
ence Methods 250 (2015) 47–63

A striking aspect of the results of our evaluation procedure
is that perfect agreement was never achieved across methods.
Even between human experts, consensus could only be reached
after discussion. This reflects the difficulty of defining reliable
rejection criteria a priori. Although all users had experience with
ICA analysis, and all were aware that the goal of this evaluation
was to reject artifactual components, they still spontaneously dis-
agreed on many occasions. This limitation puts an upper limit
to the level of agreement that could be reached by automated
methods. No matter what automated method is used, there is
always a certain level of disagreement with human users. The
main challenge experimenters are facing is to avoid by all means
rejecting important neural data. In this context it is impor-
tant to note that it is very hard for experimenters not to rely
spontaneously on implicit rules to classify the more ambiguous
components. These different attitudes are strongly influenced by
personal experience as an experimenter and the goals of a given
experiment.

The physiological processes underlying certain artifacts have
functional consequences that have to be taken into account when
analyzing data. For instance, the ocular artifact generated during
the execution of saccades are associated with a series of brain
potentials that experimenters may  not want to remove from their
data (Dandekar et al., 2012; Gaarder et al., 1964). We  therefore rec-
ommend awareness and reporting of the constraints imposed by
a specific experimental paradigm, and a good understanding and
overseeing of any automatic algorithm used to automatically select
components for rejection. For instance, high frequency gamma-
band oscillations (>40 Hz) have power at frequencies that overlap
with those of muscle artifacts. Components capturing muscle activ-
ity could thus also capture at least some neural gamma activity.
An experimenter used to analyzing high frequency gamma oscilla-
tions may thus want to preserve his or her preprocessing strategy
to interfere with their ability to capture gamma  sources, and prefer
to avoid removing any component with power at high frequencies
(Chaumon et al., 2009). Another experimenter using Brain Com-
puter Interface may  on the contrary want to automatically subtract
muscle artifacts, to avoid entering this data in the classification
algorithms but still attempt to keep concomitant EEG activity,
and therefore favor an ICA subtraction method (Fatourechi et al.,
2007). While it is laudable to attempt to minimize these exper-
imenter specific biases, they cannot be easily discarded and it is
in our opinion more important to be aware of them and attempt
to correct them by having clear goals and criteria set up front,
rather than just considering them a bad practice and ignoring their
existence.

ICA is by far not the only method available to correct for arti-
facts. A multitude of other approaches allow potentially preserving
neural signal while discarding artifacts. These methods include
low-pass filtering, regression methods, principal component anal-
ysis (Ille et al., 2002; McMenamin et al., 2009; Wallstrom et al.,
2004), signal space projection (Uusitalo and Ilmoniemi, 1997), or
canonical correlation analysis (Clercq et al., 2006). But ICA is a pow-
erful method that allows correcting for several types of artifacts at
once. It is used to remove artifacts in EEG, but also in magnetoen-
cephalographic (MEG) data (Barbati et al., 2004; Parra et al., 2005),
as well as the strong artifacts created in the EEG by concomitant
functional magnetic resonance imaging (Mantini et al., 2007). It
has proven useful in correcting ocular (Jung et al., 2000b), cardiac
(Campos Viola et al., 2009), muscle (Crespo-Garcia et al., 2008; with
some discussion, in McMenamin et al., 2010; Olbrich et al., 2011),
or ictal artifacts (Urrestarazu et al., 2004). We  have thus focused
this review on ICA because of its widespread use, and because, as
we have shown, it is not devoid of pitfalls. It is therefore impor-

tant to inform experimenters how to properly classify artifactual
ICs.
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