Announcements 3/4/13

➤ Electricity test – Everyone has now passed!
➤ Papers: 1 or 2 paragraph prospectus due no later than Monday March 25
➤ Lab Updates
➤ 3x5 time

Lab Updates

➤ EKG-EMG lab (will cover during lecture)

Lab Updates

➤ SCR GKT lab
 ➤ Should ignore first response in series and score remainder
 ➤ How to make dichotomous verdict of guilty?
 ➤ Lykken’s scoring
 ➤ Binomial Probability

Lykken Method

<table>
<thead>
<tr>
<th># with Max Response (N)</th>
<th>Probability of exactly N</th>
<th>Probability of N or fewer</th>
<th>Probability of N or More</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.17</td>
<td>0.17</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0.34</td>
<td>0.50</td>
<td>0.83</td>
</tr>
<tr>
<td>2</td>
<td>0.29</td>
<td>0.80</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>0.94</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.99</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>1.00</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Many Options…
➤ Excel: BINOM.DIST function
➤ R: binom.test function
➤ Matlab: binocdf function
➤ SPSS: Nonparametric tests, Legacy Dialogs, Binomial
Returning to EMG….

Signal Recording (cont’)

- Amplification
 - Differential amplifiers with common mode rejection
 - Actually double differential (ground)
- Amplify voltages 1000-20000 times
- May use on-line filter
 - Should pass 10-500 Hz
- Digitization (more in next lecture)
 - Fast, very fast
 - Or, slower, following on-line signal processing

Lab Updates

- EKG-EMG lab
 - EKG – done in QRSTool and CMetX
 - EMG
 - Step 1 in Neuroscan Edit
 - Filter and Rectify signals
 - Step 2 in Matlab
 - Get mean for each condition
 - Convert to within-subject z-scores

A few Applications

- Startle Probe
- Subtle affect
 - Mere Exposure
 - Subliminal effects
 - Mortality Salience
 - Biofeedback of EEG -- outcome measure
 - Emotion Regulation – outcome measure
 - Empathy – individual difference measure
A few Applications

- Startle Probe
- Subtle affect
 - Mere Exposure
 - Subliminal effects
 - Mortality Salience
 - Biofeedback of EEG -- outcome measure
 - Emotion Regulation – outcome measure
 - Empathy – individual difference measure

The Phenomenon:

- People prefer stimuli to which they have been previously exposed to unfamiliar stimuli
- In absence of any reinforcement (“mere” exposure)
- Examples:
 - We see incidentally in our routines
 - Songs
 - Scientific journal preferences
- Effect size r=.26 (Meta-analysis,Bornstein, 1989)

The logic:

- Evolutionary account Bornstein (1989)
 - it may be adaptive to prefer the familiar over the novel
 - novel objects could present a potential threat
 - organisms that had a fear of the strange and unfamiliar were more likely to survive, reproduce, and pass on genetic material
 - Preferring the familiar may thus be an adaptive trait that has evolved in humans and nonhumans
- Prediction:
 - unfamiliar as compared with familiar stimuli may be associated with more negative attitudes because of the unfamiliar stimuli’s association with potential danger
 - Thus may see greater corrugator activity to novel than to familiar
 - No prediction for positive affect (Zygomaticus activity)

Loosely translated from Harmon-Jones & Allen, 2001
A fewApplications

- Startle Probe
- Subtle affect
- Mere Exposure
- Subliminal effects
- Mortality Salience
- Biofeedback of EEG -- outcome measure
- Emotion Regulation -- outcome measure
- Empathy -- individual difference measure
A few Applications

- Startle Probe
- Subtle affect
 - Mere Exposure
 - Subliminal effects
 - Mortality Salience
 - Biofeedback of EEG -- outcome measure
 - Emotion Regulation – outcome measure
 - Empathy – individual difference measure

From Allen, Harmon-Jones, and Cavender (2001)

Ray, McRae, Ochsner, & Gross, *Emotion*, 2010

A few Applications

- Startle Probe
- Subtle affect
 - Mere Exposure
 - Subliminal effects
 - Mortality Salience
 - Biofeedback of EEG -- outcome measure
 - Emotion Regulation – outcome measure
 - Empathy – individual difference measure

Figure 1. Self-reported negative affect on a 7-point Likert scale, where 0 = “not negative at all” and “7” = “strongly negative.”

Ray, McRae, Ochsner, & Gross, *Emotion*, 2010

A few Applications

- Startle Probe
- Subtle affect
 - Mere Exposure
 - Subliminal effects
 - Mortality Salience
 - Biofeedback of EEG -- outcome measure
 - Emotion Regulation – outcome measure
 - Empathy – individual difference measure

Figure 2. Standardized (a) corrugator EMG and (b) zygomatic EMG magnitudes (averaged over Times 1 and 2).

Ray, McRae, Ochsner, & Gross, *Emotion*, 2010
Electroencephalogram (EEG)

- The EEG—an oscillating voltage recorded on scalp surface
- Reflects Large # Neurons
- Is small voltage
- Bands of activity and behavioral correlates
 - Gamma 30-50 Hz
 - Beta 13-30 Hz
 - Alpha 8-13 Hz
 - Theta 4-8 Hz
 - Delta 0.5-4 Hz

Utility of EEG

- Relatively noninvasive
- Excellent time resolution

Sources of scalp potentials

- Glial Cells – minimal, some DC steady potentials
- Neurons
 - Action Potentials – NO, brain tissue has strong capacitance effects, acting as Low Pass filter
 - Slow waves
 - Synaptic potentials – YES, both IPSPs and EPSPs from functional synaptic units are major contributors
 - Afterpotentials – May contribute to a lesser extent
Alpha and Synchronization

Why Alpha?
- It is obvious and hard to miss!
- Accounts for ~70% of EEG activity in adult human brain

From where, Alpha?
- Historically, thought to be thalamocortical looping
- Adrian (1935) demolished that theory
 - Recorded EEG simultaneously in cortex and thalamus
 - Damage to cortex did not disrupt thalamic alpha rhythmicity
 - Damage to thalamus DID disrupt cortical alpha rhythmicity
 - Thalamic rhythmicity remains even in decorticate preparations (Adrian, 1941)
 - Removal of ½ thalamus results in ipsilateral loss of cortical alpha

Andersen and Andersen (1968)
- Cooling of Cortex resulted in change in amplitude but not frequency of Alpha
- Cooling of Thalamus resulted in change in amplitude and frequency of Alpha at both thalamus and cortex
Alpha and Synchronization

- In sum, Thalamus drives the alpha rhythmicity of the EEG
- Cortex certainly does feedback to thalamus, but thalamus is responsible for driving the EEG
- Particularly the Reticularis nucleus (Steriade et al. 1985)
- What causes change from rhythmicity to desynchronization?
 - Afferent input to thalamic relay nuclei
 - Mode-specific enhancement observed

Recording EEG

- Systems are surface-based, not anatomically-based
Electrodes, Electrolyte, Preparation

- Ag-AgCl preferred, Gold OK if slowest frequencies not of interest
- Polarizing electrodes act as capacitors in series with signal
- Electrolyte: ionic, conductive
- Affixing
 - Subcutaneous needle electrodes (OUCH)
 - Collodion (YUCK)
 - EC-2 paste; lesser of the evils
 - Electrocap

Recording References

- Measure voltage potential differences
- Difference between what and what else?
- “Monopolar” versus Bipolar
 - No truly inactive site, so monopolar is a relative term
 - Relatively monopolar options
 - Body – BAD IDEA
 - Head
 - Linked Ears or Mastoids
 - Tip of Nose
- Reference choice nontrivial (more later) as it will change your ability to observe certain signals

Recording References

- Bipolar recording
 - Multiple active sites
 - Sensitive to differences between electrodes
 - With proper array, sensitive to local fluctuations (e.g. spike localization)
- Off-line derivations
 - Averaged Mastoids
 - Average Reference (of EEG Leads)
 - With sufficient # electrodes and surface coverage, approximates inactive site (signals cancel out)
 - Artifacts “average in”
 - Current Source Density (more in advance topics)

Dreaded Artifacts

- Three sources
 - 60-cycle noise
 - Ground subject
 - 60 Hz Notch filter
 - Muscle artifact
 - No gum!
 - Use headrest
 - Measure EMG and reject/correct for influence
 - Eye Movements
 - Eyes are dipoles
 - Reject ocular deflections including blinks
 - Use correction procedure (more in advance lecture)

Name That Artifact!
movement in the reference lead

Chewing!

Vertical Eye Roll

Muscle Burst

Smiling!

Talking and Moving Head
AC Signal Recording Options

- Time Constant/HP filter
 - Low frequency cutoff is related to TC by:
 \[
 F = \frac{1}{(2\pi TC)}
 \]
 Where \(F \) = frequency in Hz, \(TC \) = Time Constant in Seconds

Applying formula:

<table>
<thead>
<tr>
<th>Time Constant (sec)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>.016</td>
</tr>
<tr>
<td>5.00</td>
<td>.032</td>
</tr>
<tr>
<td>1.00</td>
<td>.159</td>
</tr>
<tr>
<td>.30</td>
<td>.531</td>
</tr>
<tr>
<td>.10</td>
<td>1.592</td>
</tr>
<tr>
<td>.01</td>
<td>15.915</td>
</tr>
</tbody>
</table>
Hi Frequency/LP Settings

- Do not eliminate frequencies of interest
- Polygraphs have broad roll-off characteristics
- Be mindful of digitization rate (more info soon!)

Digital Signal Acquisition

- Analog Vs Digital Signals
 - Analog
 - Continuously varying voltage as fn of time
 - Discrete Time
 - Discrete points on time axis, but full range in amplitude
 - Digital
 - Discrete time points on x axis represented as a limited range of values (usually 2^n, e.g. 2^12 = 4096)

A/D converters

- Schmidt Trigger as simple example
- The A/D converter (Schematic diagram)
 - Multiplexing (several channels); A/D converter is serial processor
 - Result is a vector [x0, x1, x2, ..., xn] of digital values for each channel
 - 12 bit converters allow 2^12 = 4096 values
 - 16 bit converters allow 2^16 = 65536 values

- 12 bit is adequate for EEG
 - 4096 values allow 1 value for each ~0.02 μvolts of scalp voltage (depending upon sensitivity of amplifier, which will amplify signal ~20,000 times before polygraph output)
 - e.g.,
 - 2.1130 μvolts => 2481 D.U.'s (2480.74)
 - 2.1131 μvolts => 2481 D.U.'s (2480.76)
 - 2.1250 μvolts => 2483 D.U.'s (2483.20)

The Problem of Aliasing

- Definition
 - To properly represent a signal, you must sample at a fast enough rate.
 - Nyquist’s (1928) theorem
 - A sample rate twice as fast as the highest signal frequency will capture that signal perfectly
 - Stated differently, the highest frequency which can be accurately represented is one-half of the sampling rate
 - This frequency has come to be known as the Nyquist frequency and equals ½ the sampling rate

- Comments
 - Wave itself looks distorted, but frequency is captured adequately.
 - Frequencies faster than the Nyquist frequency will not be adequately represented
 - Minimum sampling rate required for a given frequency signal is known as Nyquist sampling rate

Aliasing and the Nyquist Frequency

- In fact, frequencies above Nyquist frequency represented as frequencies lower than Nyquist frequency
 - F_Ny + x Hz will be seen as F_Ny - x Hz
 - “folding back”
 - Frequency 2F_Ny seen as 0,
 - Frequency 3F_Ny will be seen as F_Ny
 - accordion-like folding of frequency axis