Advanced Signal Processing ||
(aka Acronym Day)

Latency Jitter and Woody Filters (acronym free)
Inference Problems with Scalp Topography (acronym free)
PCA
ICA
Removal of OCULAR artifacts with ICA (and lots of acronyms)
BESA
Simultaneous EEG with ICA and fMRI!



Announcements

» Papers:

»You will received highly personal canned email
acknowledgement that it was received

»You will receive commented version via email
once all papers are graded

» Take home final due May 9 at noon (hardcopy
In my mailbox).

» Course Evals

» 3X5S



The Problem of Latency Jitter

» The averaging assumption of invariance in signal Is
not always warranted
» Especially for the later endogenous components
» To the extent that the signal varies from trial to trial, the
average will produce potentially misleading results
» Two common possibilities:

» Smearing of components;

»  will underestimate amplitude of component (especially a problem
If comparing groups, one group with more latency jitter)

» Bimodal or multi-bumped components
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The Solution

» The Woody Adaptive Filter (Woody, 1967)

» Based on Cross-correlation
» Assumptions less restrictive than averaging
methods

»Waveform (morphology) must be constant across trials
» Latency need not be constant



Detalls

> Cross-correlational series

» For two waveforms the correlation between each
of them Is computed

» first with no lag in time
al, a2, ..., an
b1, b2, ... bn
» then with one lagged with respect to the other
al, a2, ..., an-1
b2, b3, ... bn

» A series of correlation values iIs obtained by
progressively increasing the size of the lag
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More Detalls

» Can be used as a "template matching" procedure
»  Compare running average with raw EEG epochs
» This Is a method of single-trial signal detection:

VVYVY VY VYV

First create a template: either predetermined (e.g., sine wave) or
empirically determined (e.g., average)

Then calculate cross-correlational series between each raw EEG
epoch and the template

If some maximum correlation achieved, conclude signal is present
If correlation not achieved conclude absent

This can also be used as a method of determining the latency of a
component (by examining the trial-by-trial shifts), or of determining
the variability in response for a given individual (again by examining
the trial-by-trail shifts)



Woody’s Instantiation

> The Woody Adaptive Filter (Charles Woody, 1967) is a special case and
application of cross correlational technique

> The term "adaptive" refers to the fact that the template is not established a priori,
but generated and updated by an iterative procedure from the data themselves

> Procedure

> Initial template is usually either a half cycle of a sine or triangle wave, or the
unfiltered average of single trials

> Cross-lagged correlations (or sometimes covariances) are then computed between
each trial and this template typically over a limited range of samples ( e.g., region of
P300, not over "invariant" components)

> Each trial is then shifted to align it with the template at the value which yields the
maximum cross correlation (or covariance)

> A new template is then generated by averaging together these time-shifted epochs

> Procedure is repeated using this new average as the template

> repeated until the maximal values of the cross correlation become stable

> often, average cross-correlation value increment monitored; if r increases < .005 or

.001, then stability achieved

> Some implementations, trials which do not reach a minimum criterion (e.g., .30-
.50) are discarded from subsequent template construction and perhaps from
subsequent analysis altogether



Woody Filtering Demo!
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Validity

Seems to do a fair job of improving signal
extraction if a few iterations are used and if the
original signal itself is singly peaked

Wastell(1977) reports a decline in the validity of the
procedure If numerous iterations are used

Therefore, unlike averaging, Woody filtering can
only improve signal-to-noise ratio over a definite
limit

Suggests also that Woody may not be the solution
under conditions of very low signal-to-noise ratio



Dimensionality explosions!

32, 64, 128, 256!!!



Principal Components Analysis

» A method for reducing massive data sets
» See Handout for gory details



PCA (1): The Data matrix

D Kxn
Subject #1 C C - . ce g fhere N Number subjects
Subject #2 :
Subject #3 R . ca - n-1 per average
voltage at time
point 0, 1,

= U.l:]j et # N

» Data Matrix above shows only one site — could have multiple sites by
adding rows for each subject

» This data matrix is for “temporal PCA” but one could transpose for
“spatial PCA”



PCA (2): The Score matrix

S Mxm
Subject #1 er zubjects

compornen ts

Subject #Z2 3 - So, S5 3, eeay 3Bq m of

Subject #3

3 U.l:]j et #:T

» These scores for each subject are optimally weighted composites of the

original data, designed to capture as much variance as possible with as few
scores as possible.

» But for conceptual ease, imagine 5 scores: P1, N1, P2, N2, P3 amplitude



PCA (3): The Loading matrix
(to guess what components mean)
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Figure 10-4. Plot of four sets of component loadings de-
rived from a principal-components analysis (PCA) of an
ERP data set. Each of the component loading vectors is
composed of 128 peints corresponding to 128 time points
(100-Hz digitizing rate) in the waveforms.




Spatial PCA on Sample Data

PCA version




PCA (3b): The Loading Map
(for Spatial PCA)




Reminder: The ERP from which 1t derives
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PCA Component 2
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PCA (4): Reconstructing Data Matrix

>Dan~:S *men
» This reconstructed Data matrix will differ

slightly from the original Data matrix because
not all n components are used.

» To the extent that the m components account
for most of the variance in the original data set,
the reconstructed data matrix will closely
approximate the original data matrix.

NXxm



PCA (4): Caveat Emptor

» PCA is a linear model; assumes the components sum together
without interaction to produce the actual waveform

» Sources of variance are orthogonal; if two sources are highly
correlated, may result in a composite PCA component
reflecting both

» Component invariability in terms of latency jitter across
subjects

» PCA does not distinguish between variations in amplitude vs variations
In latency

» Especially a problem in comparing control vs pathological groups;
pathological groups will typically be more variable
» Allen & Collins unpublished simulation study:
» Two groups: Control & Pathological
» ldentical waveforms for each group differed only in latency

» The two groups differed significantly on three of four principal component
scores

> In other words, if one indiscriminately interprets these as amplitude or
morphology differences, one would be WRONG!!!



ICA ... a “better” PCA?

» PCA finds orthogonal components
» First PC accounts for most variance
» Next PC accounts for most remaining variance
» Components will have orthogonal scalp distributions
» |CA separates temporally independent components
» Also known as blind source separation

» May or may not correspond to brain “hotspots” but do
represent functional brain networks

> See:
http://www.sccn.ucsd.edu/~scott/tutorial/icafag.html

http://sccn.ucsd.edu/~arno/ (ICA for Dummies!)



http://www.sccn.ucsd.edu/~scott/tutorial/icafaq.html
http://sccn.ucsd.edu/~arno/
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EEG data are mixtures of source signals

Cocktail Party
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From Tzyy-Ping Jung , presented at EEGLab Workshop, Nov 8,2007
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Channels

Biomagnetometer Channel Data with Fetal Breathing Component Overlay (red)
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ICA/EEG Assumptions

e Mixing is linear at electrodes
e Propagation delays are negligible

e Component time courses are
independent

e Number of components < number
of channels.

27

From Tzyy-Ping Jung , presented at EEGLab Workshop, Nov 8,2007
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ICA: The Projection Map

Largest ERP components of ICA version
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ICA: Trial by Trial IC Projection to Pz
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|Cs as Artifacts!



“Clinical” vs Actuarial Approaches

e W B WS WA

Clinical Versus Actuarial ]udgment

RoBYN M. DAWES, DAvID Fausr, PauL E. MEEHL

Professionals are frequently consulted to diagnose and
predict human behavior; optimal treatment and planning
often hinge on the consultant’s judgmental accuracy. The
consultant may rely on one of two contrasting approaches
to decision-making—the clinical and actuarial methods.
Research comparing these two approaches shows the
actuarial method to be superior. Factors underlying the
greater accuracy of actuarial methods, sources of resis-
tance to the scientific findings, and the benefits of in-
creased reliance on actuarial approaches are discussed.

a clinical practitioner. A clinician in psychiatry or medicine may use
the clinical or actuarial method. Conversely, the actuarial method
should not be equated with automated decision rules alone. For
example, computers can automate clinical judgments. The computer
can be programmed to yield the description “dependency traits,”
just as the clinical judge would, whenever a certain TeSponse appears
on a psychological test. To be truly actuarial, interpretations must be
both automatic (that is, prespecified or routinized) and based on
empirically established relations.

Virtually any type of data is amenable to actuarial interpretation.
For example, interview observations can be coded quantitatively
(patient appears withdrawn: [1] yes, [2] no). It is thereby possible

[] 3 e a3 ant~

to incorporate qualitative observations 2 3 ()




“Clinical” vs Actuarial Approaches

» Human raters
» Good source of possible algorithms

» Lousy at reliably implementing them
> Inter-rater
» Intra-rater

» Actuarial methods
» Always arrive at the same conclusion

»\Weight variables according to actual predictive
power



|Cs as Artifacts!

ADJUST:

An automatic EEG rtifact ¢ etector based
on the oint 'se of “patial and ‘emporal
features

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



|Cs as Artifacts!

MARA (Multiple Artifact Rejection Algorithm)
FAST E R (Fully Automated Statistical Thresholding for EEG artifact Rejection)

SAS I CA (a tool for implementing these and more)...



50

Table 1

Measures computed by the three automated tools evaluated here. Abbreviations refer to those used in figures and throughout the paper.

M. Chaumon et al. / Journal of Neuroscience Methods 250 (2015) 47-63

Tool Artifact type Measure Abbreviation
SASICA Blinks/vertical eye movements Correlation with vertical EOG electrodes CorrV

Horizontal eye movements Correlation with horizontal EOG electrodes CorrH

Muscle Low autocorrelation of time-course LoAC or AutoCorr

Bad channel Focal channel topography FocCh

Rare event Focal trial activity FocTr

Non dipolar component Residual variance ResVar

Bad channel Correlation with Bad channel CorrCh
FASTER Eye blinks/saccades Correlation with EOG electrodes EOQGcorr

“Pop-Off” Spatial Kurtosis SK

White noise Slope of the power spectrum Specsl

White noise Hurst exponent HE

White noise Median slope of time-course MedGrad
ADJUST Eye blinks Temporal Kurtosis TK

Eye blinks Spatial average difference SAD

Eye blinks Spatial variance difference SVD

Vertical Eye Movements Maximum epoch variance MEV

Horizontal Eye Movements Spatial eye difference SED

Generic Discontinuities Ceneric discontinuity spatial feature GDSF

Chaumon et al., 2015
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Non-artifact components may be
mistaken for ocular components
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Other types of artifacts may be
mistaken for muscle components

Expected properties

Irregular/patchy
topography

Irregular / low frequency
noise

Stimulus evoked
response
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Bad Channel
g\omponents

Expected properties

Focal (one channel)
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Ambiguous mixture
components
D

Expected properties

More spread-out
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Stimulus evoked
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Transient noise activity
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Rare Events

A

Expected properties

Few high amplitude
events in otherwise
low amplitude
time courses

High spatial / intertrial
noise measures
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Eye blinks

Eye Blink

= Features used
= Spatial Average Difference (SAD)
» Temporal Kurtosis (TK)

= Frontal distribution

= High power in delta frequency band IR

Mognon, Jovicich, Bruzzone, & Buiatti, 2010
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Vertical Eye Movement

Vertical Eye

" Features used
" Spatial Average Difference (SAD) -
® Maximum Epoch Variance (MEV)

® Frontal distribution similar to that of an
eye blink

EB VEM HEM GD

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



Horizontal Eye Movement

B Ceatures used —

Movement

® Spatial Eye Difference (SED)
® Maximum Epoch Variance (MEV)

® Frontal distribution in anti-phase (one
positive and one negative)

EB VEM HEM GD

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



Generic Discontinuities

® Ceatures used

®  Generic Discontinuities Spatial Feature (GDSF) B
" Maximum Epoch Variance (MEV)

® \ariable distribution

® Sudden amplitude fluctuations with no spatial
preference

" Could be present in as little as one or 2 trials, and
limited to 1 channel

EB VEM HEM GD

" In component data scroll weird activity in the
trial plotted on the IC activity



<) Scroll component activities -- eegplot{)
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Uncorrected ADJUST

Smith, Reznik, Stewart, Allen (submitted)



Neural Sources of EEG



Inverse solution is not unique

Forward Solution
Model head Model data

A single pattern of neural
activity will produce a
unique scalp map

Inverse Problem

Desired model solution Recorded data

BUT ...A single scalp map
could have been produced
by an infinite number of
patterns of neural activity

From Tzyy-Ping Jung , presented at EEGLab Workshop, Nov 8,2007



Source Analysis

» BESA -- Brain Electrical Source Analysis

» This Is a model-fitting procedure for
estimating intracranial sources underlying
ERPs

» Estimate -- If model fits, then data are consistent
with these sources; yet there Is no unique solution

» Not for ongoing EEG -- too many sources



BESA

» |Imagine a data matrix of ERPSs:
Ve, (# Channels by # timepoints)

» Note that this is really the result of the
subtraction of the activity at the reference
from the activity at the these sites; I.e.,

Van - Uan - Ran
> Note: the reference matrix has identical

rowsl!

hus BESA Presumes that all

channels referenced to the same reference!



BESA

» Reconstruct a data matrix that includes not
only the original channels, but the implicit
channel (reference) as well:

Ug,,, (# electrodes = # channels+1),

which represents the activity at each electrode
with respect to an average reference (i.e., the
average of all channels)



BESA

» Now this matrix U
Into
» a set of sources: S, ., (# Sources by # timepoints)
» a set of attenuation coefficients Cg, ¢
> so that U, = Cgys Se,n

can be decomposed

EXxn



BESA

» The attenuation matrix Is determined by:
» the geometry between the source and the electrodes

» the nature of the conductance of the three-layer head
model (Brain, Skull, Scalp);
» the skull is less conductive than the layers on either side
> this results in a spatial smearing of potentials as they cross the skull

» the skull produces the equivalent of a brain that is 60% of the
radius of the outer scalp (rather than the "true" figure of ~84%)

Next



\

-
——————— e A —
e r———— e —
A ————————eeeeeeeen

Fig. 4. Coronal scalp potential distribution of a radial equivalent dipole modeling
activity of superficial coriex. The dipole is oriented inward 1o mimic, for example,
excitatory pyramidal cell activation at the apical dendrites, producing surface negativity.
neglecting the shielding effect, i.c. taking an eccentricity of about 80% in a homogencous
head model, results in 2 narrow focus, similar to the epicorticaily recorded topography
(top). Adequate reduction of equivalent eccentricity results in a realistic scalp lopogra-
phy, which is much more widespread and exhibits a positive maximum oa the opposite

side of the sphere (bottom). The simulated waveforms at the vertex (C,) and at equidistant
et e (20 electrodes over both hemispheres depict a monophasic activity arising with some
delay after stimulus delivery.
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Fig. 5. Coronal scalp distribution of 2 tangential dipole modchng fissural cortical
: /\ activity. As eaxplained for figure 4, the correctly transformed ecentricity in the homogene-
ous head model (botiom) results in 2 realistic scalp topography with widespread positive
£\ and negative maxima 1o cither side of the actual location af the source. Note that in the
quasistatic approach a single dipole source contributes the same waveform at all elec-

trodes. QOuly the atienuation factor and the sign vary with ¢lectrode site.
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BESA

» Note that the decomposition of U into C and S
results in

»an electroanatomical time-independent matrix (C)
that reflects that anatomical substrates do not move
around In the head

»a time-variant dipole source potential matrix that
represents the change in activity of each source
over time



RU= 9.6%[-1.7-118ms]




BESA Vs PCA Vs ICA
(a battle of acronyms)

» This decomposition is akin to PCA/ICA

» PCA and ICA have sources and propagation coefficients

» PCA solutions are constrained by orthogonality of
components, and by those that account for greatest
common variance

» ICA constrained to find temporally independent
components

» BESA solutions are constrained by the geometry of the
head, the volume conduction of the dipoles, and the
anatomical constraints dictated by the user (e.g., inside the
head, symmetrical, not in the ventricles, must not be in the
brainstem after a certain point in time, etc...)



BESA Vs PCA Vs ICA continued

» Like PCA/ICA, the reconstruction of the original data
set will be imperfect

» With all methods. better chance of reconstructing the
original matrix if data are reliable

> If you capture the important sources, the reconstruction
should be very good (i.e., small residual variance)

> It is useful to attempt to upset a solution by inserting
another source and seeing If:
» the original solution is stable
» the new source accounts for any substantial variance

» Can do dipole localization (BESA) on an IC!



Dipole Fitting

ICA




You can try It!

<




Implementations

> BESA can be used:

» In a strict hypothesis-testing manner by designating
sources a priori and testing the fit

» In an exploratory/optimizing manner by allowing the
program to iteratively minimize the residual variance
(between observed and reconstructed waveforms) by:
» moving dipoles
» changing the orientation of dipoles
» altering the time-by-activity function of the dipoles



BESA — Did 1t work?

» In the end, the adequacy of your solution will
be judged by
» stability of your solution:.

» against insertion of additional dipoles
» across multiple subjects

» anatomical feasibility
» follow-up tests with patients with lesions
» your reviewers!



Recording EEG In fMRI environments:

Oodles of Issues
> EEG can be bad for fMRI

» Wires and electrodes can be ferromagnetic = TROUBLE
» Wires and electrodes can be paramagnetic = less trouble

» MRI and fMRI can be bad for EEG

» Gradient switching creates huge artifact for EEG

» Movement in Magnetic fields creates current in any
conductive medium (e.g. wires!)

» High frequency current can make wires HOT and RF Is
127.68 MHz at 3T — that’s fast, and can create mega-hurts!
» Thus in-line 10K resistor



Special Caps

» Need conductive material
» That will not heat up

» That will not pose hazard in
strong magnetic field

» That includes inline resistor
to prevent any induced
current from reaching the
subject

» That includes Styrofoam
head at no charge




Whence EEG Artifacts in fMRI?

\ MAGNETOM Skyra

Transforming 3T productivity.

1. Hydrogen protons,
positively charged particles
in the hydrogen molecule's
nucleus, normally spin in
random directions

2. Protons wobble in
alignment with magnetic
fields of varying intensity;
frequency of wobble is
proportionate to strength
of individual magnetic field

3. A brief radio signal,
whose soundwave frequency
equals the frequency of
wobble of certain protons,
knocks those protons out
of alignment

4. When radio signal ceases,
protons snap back into
alighment with magnetic
field, emitting a radio signal
of their own, that announces
the presence of a specific
tissue



Whence EEG Artifacts in fMRI?

+ Faraday’s law of induction...

+ induced electromotive force is proportional
to the time derivative of the magnetic flux

+ Flux = summation of the magnetic field
perpendicular to the circuit plane over the
area circuit

¥ £=do/dt
don’t LOOK like

+ Can reflect: ,
. . . Pe=a ) l’ b mjagnets,buttheyare.
v changes in the field (g @A |

+ Changes in the circuiffis
relative to the field @™

http://commons.wikim edi furiki fFi

Coils of wire

Magnets. (I know they

trom-Synchron-Generator.ipg
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Whence EEG Artifacts in fMRI?

+ RF pulses
+ For 3T =127.6 MHz
+ Brain oscillations = 0.5-50 Hz
+ Amplifier frequency range = DC-3.0 KHz

+ Artifacts thus attenuated, but still range
overwhelm the EEG signal



Whence EEG Artifacts in fMRI?

+ Gradient Switching

+ Artifact approximates differential waveform
of the gradient pulse

+ Polarity and amplitude varies across channels
+ Frequency = 500-900 Hz

+ EEG dominated by

+ harmonics of slice repetition frequency
(=10-25 Hz)

+ convolved with harmonics of volume
repetition frequency (=0.2-2 Hz)

+ Artifacts in range from 1000-10,000 pV!



A. Timing of RFs and Gradients of EPIS Sequence
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C. Imaging Artifact on EEG Record
f :

.

Amplitude (V)
o

N
8
o

5

¥

RF = radiofrequency wave;

Gs = slice selection gradient

Gp = phase encoding gradient

Gr = readout gradient

a = Fat suppression pulses (1-3-3-1 pulses)
b = slice selection RF

¢, d, h = spoilers

e = slice selection gradient

f = dephasing and rephasing gradient

g = readout gradient

' = EEG artifact corresponding to letter




Average Artifact (across 1 TR)
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Average Artifact (0-60 msec)




Artifact (across several TRs)
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Whence EEG Artifacts in fMRI?

v
v

v

v

+ Can reflect:
3

+ Changes in the circuit geometry or position
relative to the field due to body motion



MR By field

Ejection phase
of cardiac cycle

é + Two types of movement:

3 + Axial nodding

@ IBustration of blood + Expansion at lateral sites

flow in arch of acrta
xpansion_ _ _ _ _ + Motion of blood (flow) can lead to
, movement “Hall effect”

8 z + Voltage difference on opposite sides
3 of a moving conductor through
x 4 which current is flowing, when

E within a strong magnetic field

w

w

+ Note field-strength dependent nature
of the artifact
on subjects’ back
500

3

w

3

S

w

<500

head rotation (pitch) and/or

axial blood flow momentum

Systole

Diastole



EEG in Maghet (no scanning)
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'Simulated EKG Artifac

=50

Time [ms]

Axial rotation - low frequency spatially-
distributed effect, with polarity reversal

Lateral balloon expansion - locally circumscribed artifact Debener et al., ZM



Ohmagawd... Help me in

REMOVING THOSE PESKY ARTIFACTS!



oval via moving
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FASTR: FMRI Artifact Slice
Template Removal

+ Part of FMRIB Plug-in for EEGLAB

+ Upsample to at least 20K Hz

+ Align slices for slight jitter in timing

+ Moving Window approach with subtraction

+ PCA on artifact residuals form Optimum
Basis Set (OBS) to reduce residual
artifacts by 90%

+ Downsample to original rate
+ Sample Results............... :



/

N ‘

¥
'_

e — .]ltll

AR l | !

-_1 1}174 A0

o

AE IET
A5

- [
- L




192

-—

b m I "“' l" hlh A Wi f
r ’ﬁhmm ..-."ﬁ-,-‘“'“-"'"!'l .4“.&&“; Lo
i A iy o
h e

4

o

t:mvyf
RSN,

o
rl
it

AL .. LA
N
y “'ﬁiﬂﬂ!ggaEHEHHHaﬂgﬁaiu'ﬁ‘ﬁ#unilq=ﬂ=Fiq§Qi“'*

N N A N N o T e DT A ey ATV -H_’ "

T A Y e VN (ISP A SR U
AR - 'W"&d
A R AV A (VI A A
S e \
e et N e T A e o S AN
N A AL A A

= - }-l.r bR #‘i o o B S, it

wam% TR
VRN eV L ISR
e S A ISR

Yl

N

- 'MWMM ALY,

e

m‘ Ty
N

Al ey

LTIV T o N I B0 NI T T I W 2 W T T N T R 0 T 0 S S Tl Y

]

i

— ——

1.0

CANCEL

Event types

1
41 42

Chan.

FP1

| 1
43 44

J=
[p]

Time Yalue

2
45 2566 -AR41 129 314 |
2 -

REJECT

Scale

314



moval via moving
traction (aten et al. 1998)

[ 250 pv

[25mv
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1 1 1 I 1 1 1 1

1 sec

Fig.5 Schematic of the average artefact subtraction procedure. For each channel, a waveform tem-
plate is generated by averaging EEG epochs over adjacent cardiac cycles, with the time- locking
event being derived from the ECG. The template generation is combined with a moving average
procedure, and new templates are generated for each cardiac cycle. The procedure is repeated for
each EEG channel
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There may be residual crud (RC
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Simultaneous EEG and RSTMRI
(following ICA!)

Debener, Ullsperger et al J Neurosci 2006



Multi-modal Imaging

+ lTether EEG asymmetry to other
measures neural systems known to
be involved in MDD

Baseline
CBF PET
All PT vs NC

CBF
increases

3 months DBS
CBF Change
Responders

decreases

6 months DBS
CBF Change
Responders

Mayberg et al., 2005



Multi-modal Imaging

+ Create RS-fMRI network with ACC seeds

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation



EEG Alpha Asymmetry is Negatively Correlated with IFG
Connectivity in Two ACC-seeded Resting State Networks

Spatially-enhanced EEG asymmetry (using CSD transform) at sites F8-F7 is related to
resting state connectivity between left inferior frontal gyrus and two ACC-seeded networks.

R L P A

Dorsal ACC-seeded Network

Center of the depicted cluster is (x,y,z) -46, 28, -4 MNI
pordinates.

Largest correlation: r = -0.69

Subgenual ACC-seeded Network

Center of the depicted cluster is (x,y,z) -54, 28, -4 MNI
oordinates.

Largest correlation: r =-0.71

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation

\



EEG-fMRI Synopsis

» Less relative left frontal activity (indexed by
EEG) is related to increased connectivity of
left IFG to two ACC-seeded RS networks

+ Consistent with:

+ Hyper-connectivity in RSfMRI emotion networks
in MDD (e.g., Grecius et al., 2007; Sheline et al., 2010)

+ Frontal EEG asymmetry findings of less relative
left frontal activity in risk for MDD.

+ Alpha power may regulate network
connectivity

+ Note: Between vs Within Subjects



BETWEEN-SUBJECTS’ DATA DOES NOT
NECESSARILY SUPPORT A WITHIN-
SUBJECTS’ INTERPRETATION



Within Subjects’ Moderation
of RSfMRI Connectivity

+ Calculate F8-F7 alpha asymmetry for each
TR

+ EEG leads TR by 4.096 seconds
+ Median split into high (left) and low (right)

+ Entered as moderator in PPl approach (cf.
Friston et al., 1997)

+ Tests whether strength of connectivity to
seed region varies as a function of the
moderator

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation



Within Subjects’ Moderation
of RSTMRI Connectivity

Dorsal ACC Seed Greater Connectivity with
Less Left Frontal Alpha or
Greater Left Frontal Alpha

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation



Within (red) and Between (blue)
Within-subject effects more extensive




Cognitive Control over Emotion

+ IFG has a key role in mediating the success
of cognitive control over emotional stimuli



Cognitive Control over Emotion

v Left IFG: + Right IFG:

Language and Attentional control
self-referential + behavioral inhibition

: + suppression of
rocessin

P S unwanted thoughts

+ attention shifting

+ efforts to reappraise
emotional stimuli
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Cognitive Control over Emotion

+ Left IFG: + Right IFG:
Language and Attentional control
self-referential + behavioral inhibition
processing + suppression of

unwanted thoughts
+ attention shifting

+ efforts to reappraise
emotional stimuli

+ Working Hypothesis:

+ Hyperconnected left IFG and emotion networks:
rumination

+ Hypoconnected right IFG: difficulty disengaging from
emotion






Psychophysiology -- Synopsis

» Psychophysiology Is inherently
Interdisciplinary, and systemic

» Principles learned here can apply to a wide
range of physiological signals
» Recording
» Processing
» Interpretation



Psychophysiology -- Synopsis

» Ultimately we obtain correlates of behavior and
experience

» Psychophysiological Correlates are not privileged; they are
no better, no worse, than any other correlate of behavior
and experience

» The utility of these correlates — like any correlates In
science — hinges upon:

» good experimental design

» strong theoretically driven hypothesis testing

» the development of a nomological net, a set of inter-
relationships among tangible measures and constructs that
place the findings in a larger theoretical context, and lend
construct validity to the measures and findings



Mundane Detalls

» Exams due Monday May 9 by noon in my
mailbox, room 312 Psychology.

» Papers will be emailed to you

» Final grades will be available for lookup on the
web; email will alert you



