Announcements (01/28/19)

> 401B and 501B:
> Laboratory Meeting Wed Feb 13, 3⁰⁰-5⁰⁰ pm
> Electricity Test in 2 weeks (Feb 11)

Lecture 2

28 January, 2019

In Bhxe Niewws...

Foundations:

Basic Electricity Basic Neurophysiology Basic Neuroanatomy

A few selected studies to highlight the utility of a psychophysiological approach

- ≻Bauer (1984): Prosopagnosia
- ≻Öhman & Soares (1993): Phobias
- ≻ Speigel (1985): Hypnosis
- Deception Detection studies
- ► Investigation of Persistent Vegetative State
- Brain-Computer Interfaces for assisted communication

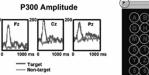
But First...

Finishing up from last lecture

Syndromes where interaction with environment difficult or impossible

- Amyotrophic lateral sclerosis (ALS)
- ➤ Vegetative States

Farwell & Donchin (1988) Electroencephalography and clinical Neurophysiology


- Attempted to develop an applied ERP system for communication without motor system involvement
- ➢ For "locked in" patients

CRT Dis	play (Jsed i	n the I	Mental	Prosthesis
MES	SAGE	E			
	BR	AIN			
Cho	ose o	ne lett	er or	commar	nd
А	G	м	s	Y	*
в	н	N	т	z	*
С	Т	0	U	*	TALK
D	J	Р	v	FLN	SPAC
E	к	Q	w	*	BKSP
F	Ł	R	х	SPL	QUIT
Fig. 1. CRT display used in the mental prosthesis. The rows and columns of the matrix were flashed alternately. The letters elected by the subject ('B-R-A-1-N') were displayed at the top of the screen in the pilot study.					

4

1

c P300 – Brain-Computer-Interface (BCI)

P300-BCI. Rows and columns of letter strings are lighted in rapid succession. Whenever the desired letter (P) is among the lighted string, a P300 appears in the EEG (after Sellers & Donchin 2006; Piccione et al.2006).

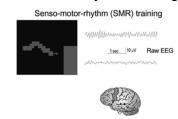
Figure from Birbaumer, 2006

Can't we speed things up?

http://www.youtube.com/watch?v=2KtMCX7FfZ0 https://www.youtube.com/watch?v=zqYJQGk5I4M

Fig. 4. A monkey is feeding himself with the aids of a robotic arm by producing the same pattern of neural activity in the more cortex as would be required to move his isom limb. The trajectory of the robot arm is depicted sequentially. In expectancy of the picee of an apple, the monkey protrudes his tongue. From the monkey only the head is visible. (We thank Dr. Andres Schwartz, from the School of Medicine. University of Pittbarneh. Pittbarch. USA, for this science and for the permission of repreduction.)

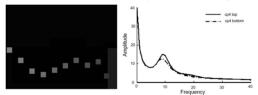
From Kübler& Neumann (2005), Progress in Brain Research, 150, 513-525


Operant methods (Birbaumer et al.)

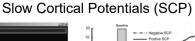
MEDICAL ENGINEERING, VOL. 51, NO. 6, JUNE 2004

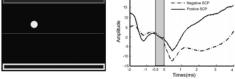
Brain-Computer Communication and Slow **Cortical Potentials** Thilo Hinterberger[#], Stefan Schmidt, Nicola Neumann, Jürgen Mellinger, Benjamin Blankertz, Gabriel Curio, and Niels Birbaumer

Senso-motor Rhythm Training


в

Top right: Senso-motor-rhythm (SMR) oscillations fromsensorimotor cortex during inhibition of movement and imagery or execution of movement (EEGtrace below). On the left part of the picture is the feedback display with the target goal on the right side of the screen indicating the required SMR increase (target at bottom) or SMR decrease (target at top). The curser reflecting the actual SMR is depicted in red moving from the right side of the second of the screen toward the target goal.


Birbaumer, 2006


Senso-motor Rhythm Training

- ۶ Patients' task is to move the cursor into the target.
- Cursor movement is indicated by the squares (only one square is visible).
- ۶ The cursor moves steadily from left to right, vertical deflections correspond to the SMR amplitude.
- EEG frequency power:
 Eold line: frequency power spectrum when the cursor had to be moved toward the top target
 - Dashed line: cursor had to be moved toward the bottom target.

Kübler & Birbaumer, 2008, Clinical Neurophysiology 119, 2658–2666

- > Targets are presented at the top or bottom of the screen.
- Patients' task is to move the cursor (yellow dot) toward the target
- Cursor moves steadily from left to right and its vertical deflection corresponds to the SCP amplitude.
- A negative SCP amplitude (dashed line) moves the cursor toward the top, positive SCP amplitude (bold line) toward the bottom target.
- Before each trial, a baseline is recorded indicated by the green bar.
- > At time point -2 s the task is presented, at -500 ms the baseline is recorded and at zero cursor movement starts.

Kübler & Birbaumer, 2008, Clinical Neurophysiology 119, 2658–2666

BCI using slow cortical potentials (SCP depicted at the top). Patient selects one letter from the letter string on screen (right below) with positive SCPs, the spelled letters appear on top of the screen

Hinterberger .. Birbaumer, 2004, IEEE Transactions of Biomed Engr, 51

Many Methods

- Many EEG DVs
- ≻Many features to extract
- Many classification algorithms (adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning)
- See it in Action: https://www.youtube.com/watch?v=x_Ba1aEjxp0

For recent review: Lotte et al. (2018) J Neural Engineering http://iopscience.iop.org/article/10.1088/1741-2552/aab2f2/meta

EG pattern	Features	Classifier	References
Motor imagery	Band power	Adaptive LDA with GMM	[24.83.129]
Motor imagery	Band power	Adaptive LDA with FCM	[130]
Motor execution	AR parameters	Adaptive Gaussian classifier	[149]
Motor imagery	Band power	Adaptive LDA	[132, 219]
Motor imagery	Band power	Adaptive Gaussian classifier	[131]
Motor imagery	Band power	Semi-supervised CSP+LDA	[137]
Motor imagery	Adaptive band power	Adaptive LDA	[63, 64, 220, 221]
Motor imagery	Adaptive CSP patches	Adaptive LDA	[196]
Covert attention	Band power	Incremental logistic regression	[133]
MRP	Band power	Incremental SVM	[2]
c-VEP	CCA	Adaptive one-class SVM	[206]
P300	Time points	SWLDA	[239]
P300	Time points	Semi-supervised SVM	[81. 122. 151]
P300	Time points	Co-training LDA	[178]
P300	Time points	Unsupervised linear classifier	[104, 105]
ErrP	Time points	Unsupervised linear classifier	[28]

Lotte et al. (2018) J Neural Engineering

Foundations:

Basic Electricity Basic Neurophysiology Basic Neuroanatomy

Part I: Basic Electricity

- ➢ Prelude
- ➤ Atomic Stuff
- Voltage, Resistance, Current, Power, Energy
- DC Series Circuits
- DC Parallel Circuits
- > AC Circuits in brief

Prelude: Scale of Measurement

- ➢ Deci = 10⁻¹
- ➤ Centi = 10⁻²
- \blacktriangleright Milli = 10⁻³
- ➢ Micro = 10⁻⁶
- ➢ Nano = 10⁻⁹
- \blacktriangleright Pico = 10⁻¹²
- ➢ Fento = 10⁻¹⁵
- \blacktriangleright Kilo = 10³
- ➤ Mega = 10⁶
- ➢ Giga = 10⁹
- ➤ Tera = 10¹²
- Bits, Bytes, Mega, Giga, Tera (explained)

 1 bit = a 1 or 0 (b)

 4 bits = 1 hybble (7)

 8 bits = 1 bybte (B)

 1024 bytes = 1 Kilobyte (KB)

 1024 kilobytes = 1 Kilobyte (MB)

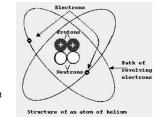
 1024 kilobytes = 1 Gigabyte (GB)

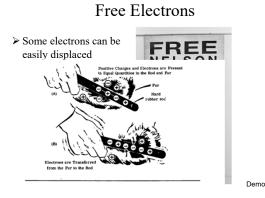
 1024 Gigabytes = 1 Terabyte (TB)

985 gigadollars

The U.S. federal budget deficit for fiscal year 2019 is \$985 billion. FY 2019 covers October 1, 2018, through September 30, 2019. The deficit occurs because the U.S. government spending of \$4.407 trillion is higher than its revenue of \$3.422 trillion. - 4.4 teradollars 3.4 teradollars The deficit is 18 percent greater than last year. The FY 2018 budget created an \$833 billion deficit. 833 gigadollars

What's a Trillion \$ (Tera \$)

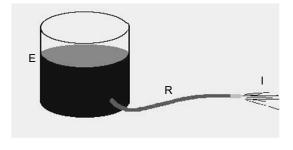

http://www.pagetutor.com/trillion/index.html

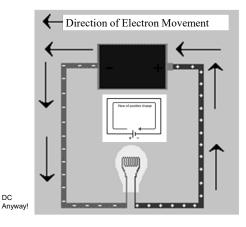

Prelude: 3 Great Forces

- Nuclear Strong, very short (subatomic) distances ...
- Electrostatic Holds all kinds of stuff together in the everyday world
- ➤ Gravitational
- Weakest, but impressive over very large distances and with large masses

Electrostatic Forces

- Due to charged
- subatomic particles
- > Proton
- Electronbut not Neutron
- ➤ The Law:
 - > Unlike Charges Attract
 - Like Charges Repel

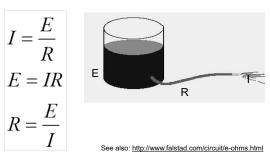


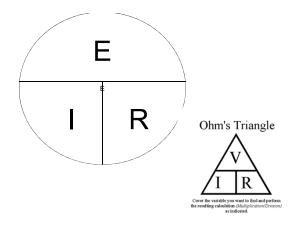


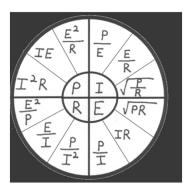
Static Electricity

- Friction with Poor Conductors
- Electrons displaced from one substance to the other (e.g Hair to comb, carpet to body)
- Leads to voltage potential (i.e., difference)

Basic Electricity by Analogy

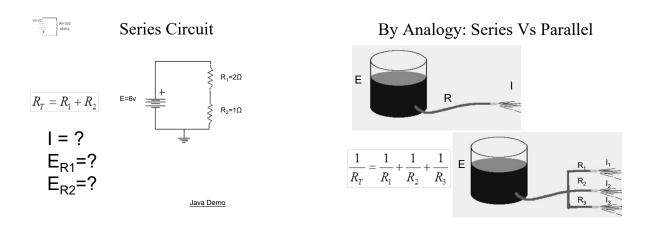




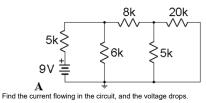

Details Details

Ohm's Law

Symbol	Term	aka	Unit
Е	Voltage	Electromotive Force	Volts (V)
Ι	Current	Rate of Flow	Amperes (A)
R	Resistance		Ohm (Ω)
Р	Power	Rate of work	Watt (w)
W	Energy	Ability to do work	Watt-Second (Joule)

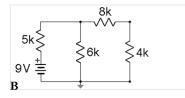


Why are we talking **Basic Circuit** R=100 ohms about this stuff? ≻We will be recording electrical signals! Е ≻ Spoiler alert: Neurons communicate using Ş R=3Ω electrical principles E=6v I R ≻Lab Safety see <u>https://www.youtube.com/watch?v=3XVtUUtfjJE</u> | = ?

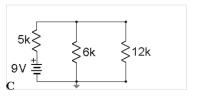

Volt-Ohm Meter Demo

Parallel Circuit

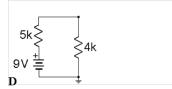
$\frac{1}{50} \frac{E_s}{V}$	$\begin{cases} R_1 \\ 25 \Omega \end{cases}$	R ₂ 2 10 Ω	R ₃ 50Ω
R _T = ? I _T =?	₁ =? ₂ =?	$\frac{1}{R_T} = \frac{1}{R_1}$	$=? + \frac{1}{R_2} + \frac{1}{R_3}$


Complex Circuits

YIKESI Need to reduce. Start at the parallel combination of 20k and 5k resistors; it is replaced with its effective resistance of 4k $[1/R_{equiv} = 1/20 + 1/5 = 1/20 + 4/20 = 5/20 = 1/4]$.


This and subsequent slides on this circuit adapted from: "http://www.physics.udel.edu/~watson/phys345/examples/effective-circuit.html"

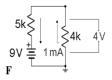
Slightly less Complex Circuit

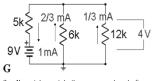

Looking Better. The effective resistance of 4k is in series with the actual resistance of 8k, leading to replacement by its effective resistance of 12k. $[R_{\text{equiv}}=4k+8k]$

Less Complex Still

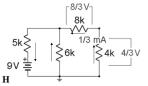
Better Still. Now there is a parallel combination of 12k and 6k resistors; it is replaced with its effective resistance of 4k $[1/R_{equiv} = 1/12 + 1/6 = 1/12 + 2/12 = 3/12 = 1/4].$

Now Series: Almost Simple

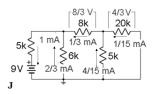

Now we have a simple series circuit! Finally, the equivalent resistance for the entire circuit is 9k. $[R_{\text{equiv}} = 4k + 5k].$


I = ? [I = E/R = 9 V/9 k = 1 mA]

Working Back: Voltage Drops and Current

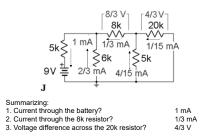

The real 5k resistor and the effective 4k resistance each have 1 mA of current since they are in series. Thus the 4k resistance has 4V of voltage difference across it (by Ohm's law).

Working Back: Voltage Drops and Current

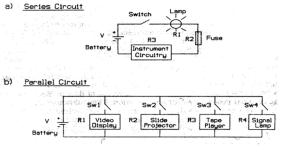

Breaking the 4k resistance into its component parts (in parallel), we find that 2/3 mA of current flows in the 6k resistor and 1/3 mA flows in the effective resistance of 12k. I = L/R = 4/6K = 2/3 mA I = E/R = 4/12K = 1/3 mA

Working Back: Voltage Drops and Current

Breaking the 12k resistance into its component parts (in series), we find that there is 8/3 V across the 8k resistor and 4/3 V across the effective resistance of 4k. $E = IR = 4K\Omega * 1/3 mA = 4/3 V$ $E = IR = 8K\Omega * 1/3 mA = 8/3 V$


Working Back: Voltage Drops and Current

Finally, breaking the 4k resistance into its component parts (in parallel), we find that 1/15 mA of current flows in the 20k resistor and 4/15 mA flows in the 5k resistor. I = $E/R = (4/3V)/20K\Omega = 4/60$ mA = 1/15 mA


 $I = E/R = (4/3V)/20R\Omega = 4/00 \text{ mA} = 1/13$ $I = E/R = (4/3V)/5K\Omega = 4/15 \text{ mA}$

Working Back: Voltage Drops and Current

In Real Life...

B. MARSHALL-GOODELL, L. TASSINARY, AND J. CACIOPPO

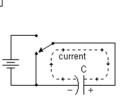
Capacitance

Capacitor = two conductors separated by a dielectric. Dielectric = material that is a good insulator (incapable of passing electrical current), but is capable of passing electrical fields of force. Examples include glass, porcelain.

Charged Capacitor = more electrons on one conductor plate than on the other.

Capacitance

Two closely spaced plates – offer essentially no resistance


- As negative charge built up on first plate due to flow of electrons, a positive charge would build up on second plate
 - > The current charges the plates of the capacitor, but does not flow through the capacitor, itself.

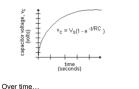
Capacitance Charging - current flows current

С

until capacitor is fully charged, then stops

Discharging - current flows in reverse direction until capacitor fully discharged

Capacitance - Size Matters


➤ Which has more capacity?

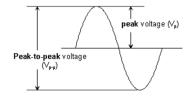
➤ More capacity, more current flows before capacitor is fully charged

Capacitor Time Constants

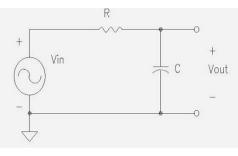
acitor

time (seconds)

Capacitor's voltage increases


Current flow grinds to a halt

The capacitor's time constant TC=

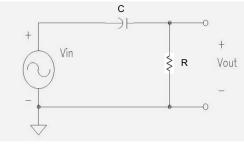

- The time in seconds for it to become 63.2% charged
 The time in seconds for current flow have slowed by 63.2% from its starting value

AC Circuits

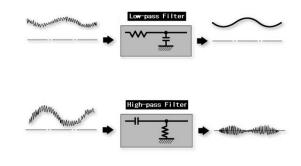
- DC Circuit: Current Flow is unidirectional, from ·≟ -to +
- 1 AC Circuit: Current Flow switches direction periodically (at a given frequency in Hz)

Using Capacitors to make Low Pass Filters

What will happen to fast signals; slow signals?


AC Circuits and Capacitance

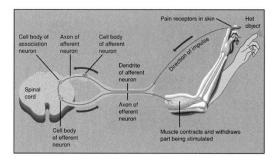
- Slowly alternating signals
 - > will fully charge capacitor, and signal will be impeded
- Rapidly alternating signals
 - > will not fully charge the capacitor before the direction of flow reverses, allowing signals to pass unimpeded


http://micro.magnet.fsu.edu/electromag/java/capacitor/

https://www.youtube.com/watch?v=aoIH0aTnOhk

Using Capacitors to make High Pass Filters

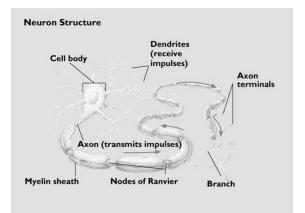
What will happen to fast signals; slow signals?



Brown & Benchmark Introductory Psychology Electronic Image Bank copyright © 1995 Times Mirror Higher Education Group, Inc

Part II: Basic Neurophysiology

- ➤ Three basic units inside the brain
 - ➤ Glial cells
 - Extracellular space: not really space
 - \succ The neuron
 - ➤ <u>Three types</u>:
 - ➤ Sensory
 - ≻ Motor
 - ➤ Interneuron



The Common Household Neuron

- Vary widely, but <u>all have</u>:
 - Cell body (soma)
 - > Dendrites
 - > Axon
 - ➢ Myelin sheath
 - Nodes of Ranvier
 - Microtubules
 - <u>Terminal buttons (AKA synaptic knob)</u>
- \blacktriangleright Nerve = a bundle of axons

Jump to Next

Myelin Sheath Myelin sheat Nodes

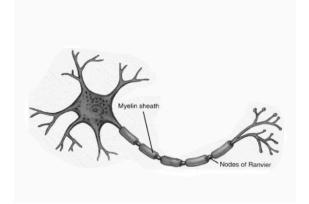
Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc.

The Synapse Synapse Cell body Axon terminal Axon Synapse Synapse

Neural Communication

- Axonal Conduction (electro-chemical)
- Synaptic Transmission (chemico-eletrical)

Axonal Conduction


Resting potential

- > Inside of cell slightly negative
- > Two forces act upon these ions
 - Concentration gradient--osmotic force
 Electromotive force
- Equilibrium potential:
 E_{ion} = (R*T/z*F) * ln(Conc_{Ex}/Conc_{In})
 where R is gas constant, T is temperature, z is ionic valence, and F is Faraday's constant.
- The Hodgkin & Huxley Model

Axonal Conduction

- > Depolarization
 - ➤ Threshold
 - ≻ Axon Hillock
 - > Na ions rush in resulting in:
 - Action potential;
 - > All or none phenomenon, high frequency
 - > Afterpotentials; hyperpolarizing, depolarizing; slow frequency
 - > Changes in membrane permeabilities
 - ≻ Propagation
- Refractory period

Jump to Next

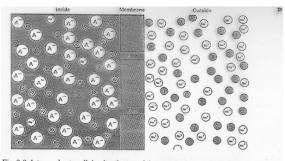
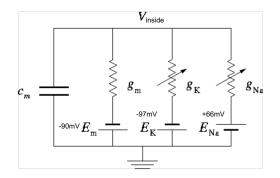
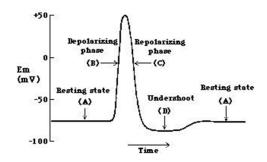
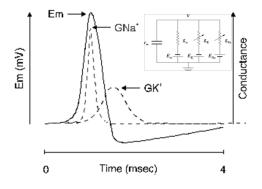
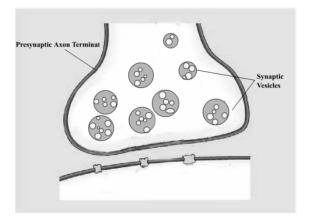
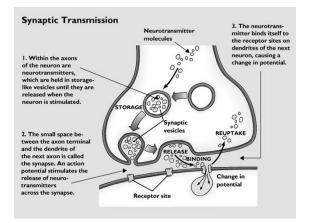





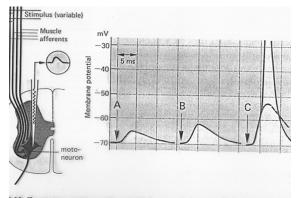
Fig. 2-3. Intra- and extracellular distribution of the ions. On both sides of the membrane, the different ions are indicated by *circles of different diameter*, proportional in each case to the diameter of the (hydrated) ion. Λ^{-} designates the large intracellular protein anions. The passages through the membrane, the "porces," are just large enough to permit the K* ions to diffuse through.



Synaptic Transmission

- ≻Not an all-or-none phenomenon
- Synaptic gap or cleft at the synaptic junction
- Single axon splits near end--terminal arborization
- ≻As action potential arrives
 - Synaptic vesicles migrate to cell membrane fuse and release
 - >Neurotransmitters diffuse across the synaptic cleft
 - > combine with post-synaptic receptors
 - When neurotransmitter binds to a receptor on the post-synaptic cell, a slow electrical potential (post-synaptic potential) is generated:
 - ≻5 to 20 mV at peak amplitude
 - >20-150 msec in duration (50 to 6 Hz)




Synaptic Transmission

- Post-synaptic potentials (PSP's);
 - ≻Excitatory
 - ➢Inhibitory Interaction
- > Summation/Integration
 - ≻ <u>temporal</u>

 - <u>spatial</u>
 <u>decremental conduction</u> on dendrites and soma > axon hillock is critical area at which threshold must be reached
- <u>After release of neurotransmitter</u>,
 - ➤ reuptake
 - degradation
- > Functional Synaptic Units

Jump to Next

3-10. Excitatory postsynaptic potentials, recorded intracellularly from a mot ifferents in the peripheral nerve from the associated muscle are stimulated el

Fig. 3-11. Inhibitory postsynaptic potentials. Experimental arrangement as in Fig. 3-10, except that here an antagonist nerve is stimulated.

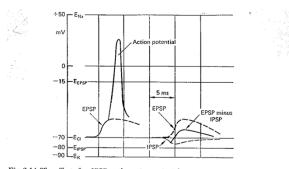
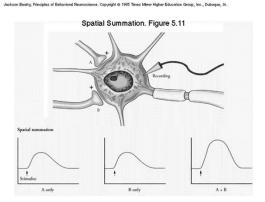
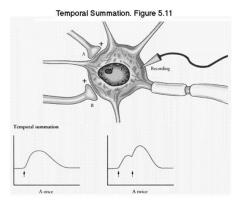
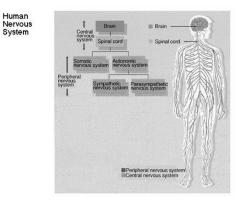




Fig. 3-14. The effect of an IPSP on the action potential; experimental arrangement as in Fig. 3-13. The homonymous nerve is stimulated strongly enough to produce a supratureshold EPSP (*left*). On the *right*, the antagonist nerve is stimulated about 3 ms before the homonymous nerve. The equilibrium potentials of Na⁺, K⁺, Cl⁻, EPSP, and IPSP are shown.

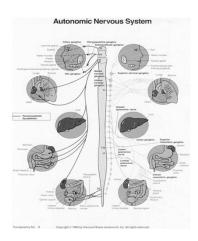

ackson Beatty, Principles of Behavioral Neuroscience. Copyright @ 1995 Times Mirror Higher Education Group, Inc., Dubuque, IA.

Part III: Basic Neuroanatomy

- V. Organization of the nervous system
- A. Central nervous system
 - 1.Brain
 - 2. Spinal cord

If the human brain were so simple that we could understand it, we would be so simple that we couldn't.

Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc


- V. Organization of the nervous system
 - B. Peripheral nervous system
 - 1. Somatic system
 - 2. Autonomic system; two branches work in generally antagonistic fashion

Somatic System

- Descending motor tracts within spinal cord synapse at approximate level of exit
- Post-synaptic neuron directly innervates target
- ➤ 2-neuron system

Autonomic System

- Descending motor tracts within spinal cord synapse not necessarily at level of exit
- After exit, synapse again before innervating target
- ➤ 3-neuron system

V. Organization of the nervous system

- B. Peripheral nervous system
 - 2. Autonomic system
 - a. Sympathetic nervous system
 - 1. tends to have system-wide effects
 - 2. flight or flight; activity
 - b. Parasympathetic nervous system
 - 1. tends to affect one organ at a time
 - 2. quiescent processes--digestion, protects and conserves energy

Sympathetic

· Prepares body for action · Catabolic processes that require energy expenditure

After synapse within grey-matter of spinal cord, the post-synaptic (pre-ganglionic) neurons exit in thoracic or lumbar regions

Thoracolumbar system

inoracolumbar system
 pre-ganglionic neurons travel to sympathetic chain (series of connected sympathetic ganglia \$\star{swelling or knot"}, chain of neurons)
 post-ganglionic neurons generally travel a long distance to target organ

Parasympathetic

· Restores and maintains body resources Anabolic processes that increase the body's supply of stored energy

 After synapse within grey-matter of spinal cord, the post-synaptic (pre-ganglionic) neurons exit in cranial (especially cranial nerve #10, Vagus) or sacral regions

Craniosacral system

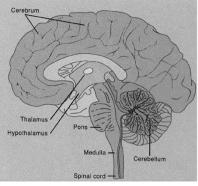
 pre-ganglionic neurons travel some distance before synapsing in the parasympathetic ganglia located in the immediate vicinity of the target organ • post-ganglionic neurons are therefore

typically quite short

Sympathetic	Parasympathetic
Pharmacologically: • All synapses within the sympathetic ganglia are acetyleholinergie • Terminal buttons on target organs are noradrenergic (except sweat glands: acetyleholinergie)	Pharmacologically, • All synapses acetylcholinergic: both pre- and post-ganglionic neurons
 Quick diffuse action of system due to the sympathetic ganglionic chain prepares organism for <i>fight-or-flight</i>: in synchrony, many systems activate dilation of bronchioles dilation of pupils (the better to see you with my dear) constriction of blood vessels to skin and gastrointestinal system inbibition of gastrointestinal system increased BP, stroke volume, cardiac output 	Slower and more specific action of this system works to restore and maintain bodily resources; only changes that are necessary generally occur (not all systems in synchrony) • decreased heart rate, blood pressure • onstriction of pupils and bronchioles • increases in digestive functions

· increased sweating

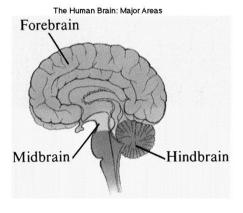
Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc

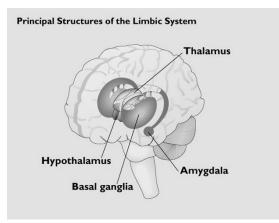

Brain's Main Structures

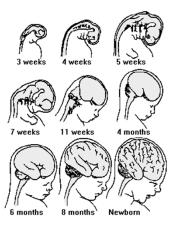
VI. The common household brain

≻Commentary

≻More commentary

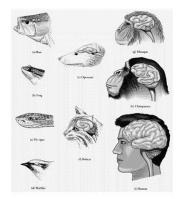

Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc

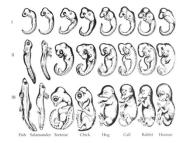

VI. The common household brain


A. Overview of brain

- 1. The primitive central core
- 2. Limbic system, or the "Inner Lizard"
- 3. Cerebrum (AKA cerebral hemispheres)
 - a. Ontogeny
 - b. Phylogeny
 - c. Ontogeny recapitulates phylogeny
- 4. These three layers are interconnected extensively; do not function independently

Next





Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc.

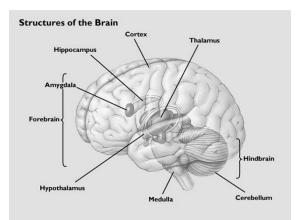
The Evolution of the Cerebrum*

*... this history of the embryo (ontogeny) must be completed by a second, equally valuable, and closely connected branch of thought - the history of race (phylogeny). Both of these branches of evolutionary science, are, in my opinion, in the closest causal connection; this arises from the reciprocal action of the laws of heredity and adaptation... 'ontogenesis is a brief and rapid recapitulation of phylogenesis, determined by the physiological functions of heredity (generation) and adaptation (maintenance)."

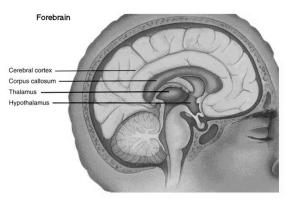
Haeckel, E. 1899. Riddle of the Universe at the Close of the Nineteenth Century.

Directions please!

- ▶ lateral--side; medial--middle
- >anterior--front; posterior/dorsal--back
- ➤rostral--towards the nose; caudal--towards the tail
- ▶ ipsilateral--same; contralateral--opposite
- proximal--toward the soma; distal--away from the soma
- > efferent--output/motor; afferent-receiving/sensory


B. Brain Specifics

- 1.Primitive central core
 - a. <u>Cerebellum</u>
 - 1. "little brain" located to rear of brain stem
 - 2. involved in smooth coordination of movements
 - 3. learning of complex motor activities (e.g., piano, skiing)


B. Brain Specifics

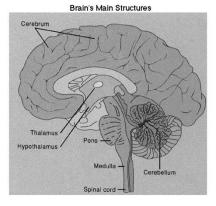
1. Primitive central core

- b. <u>Thalamus & Hypothalamus</u>: located just above the brain stem & tucked inside the cerebral hemispheres
 - 1. Thalamus is a relay station for sensory information
 - a. "Gateway to the cortex"
 - b. coming from spinal cord to cortex
 - c. taste touch hearing vision -- olfaction is exception
 - 2. Hypothalamus
 - a. literally = "under thalamus" ; much smaller, but very important
 - b. 4 <u>F</u>'s:

Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc.

B. Brain Specifics

1. Primitive central core


 <u>Reticular system</u> a.diffuse from brainstem to thalamus
 3 <u>A's</u>, arousal, awareness, attention

Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc

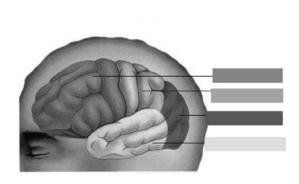
B. Brain Specifics

2. Limbic system

- a. a group of structures lying along the innermost edge of the cerebral hemispheres
- b. involved in instinctual behaviors in lower animals (caring for young, mating, fleeing from attackers, fleeing from prey)
- c. involved in memory and emotion in humans
- d. Especially important structures within the Limbic system:
 - i.. Hippocampus
 - ii. <u>Amygdala</u>

The common household brain

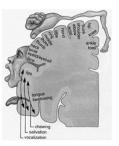
≽3. The cerebral hemispheres ≻a. Grey matter vs white matter



Four Lobes of the Cerebral Cortex Frontal lobe Parietal lobe Occipital lobe Temporal lobe

Brown & Benchmark Introductory Psychology Electronic Image Bank copyright © 1995 Times Mirror Higher Education Group, Inc.

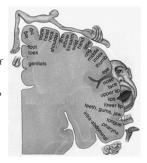
The common household brain


- 3. The cerebral hemispheres
 - b. Four lobes:
 - 1. frontal
 - 2. parietal
 - 3. occipital
 - 4. temporal

The common household brain

3. The cerebral hemispheres

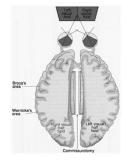
- b. Motor area
 - 1. topographic organization--
 - Homunculus
 - 2. contralateral control of body

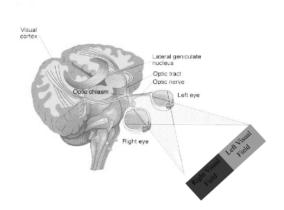


The common household brain

3. The cerebral hemispheres

d. Somatosensory area

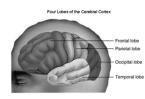

- 1. heat, cold, touch, pain, sense of body movement
- 2. contralateral
- 3. space appropriated in accord to amount of use or need



The common household brain

3. The cerebral hemispheres

- e. Visual area
- Contralateral visual field
- Primary vs Secondary



The common household brain

f. Auditory area

- 1. bilateral representation
- 2. contralateral stronger

The common household brain

- g. Association areas
 - 1. functions which are not directly sensory or motor
 - 2. Examples:
 - a. motor planning
 - b. thought
 - c. speech
 - d. problem solving
 - e. complex object recognition (e.g. prosopagnosia)
 - f. Phylogeny of Association Cortex

Luria's Functional Systems

1. Primary

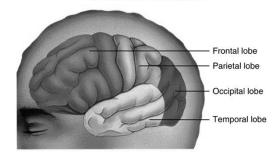
- a. Motor (precentral gyrus);
 - (1) topographic organization
- b. Sensory
 - (1) Somatosensory (post central gyrus)
 - (2) Visual (Occipital cortex)
 - (3) Auditory (Banks of Lateral Sulcus)

Luria's Functional Systems

2. Secondary

- a. Motor (rostral to precentral gyrus): motor programming, sequences of movements
- b. Sensory (caudal to postcentral gyrus): **unimodal** sensory integration

Luria's Functional Systems


3. Tertiary

a. Motor (frontal lobes): goal directed acts, long-term & short-term planning, internal manipulation of "ideas" and representational systems that are basic to abstract thought

b. Sensory (parietal-temporal-occipital junction): **cross-modal** integration of sensory information

Four Lobes of the Cerebral Cortex

Brown & Benchmark Introductory Psychology Electronic Image Bank copyright @ 1995 Times Mirror Higher Education Group, Inc

"The left side of your brain is good at math and science. The right side is creative and playful. You'll get a raise as soon as you have the right side surgically removed."