Lecture 2

28 January, 2019
Announcements (01/28/19)

- 401B and 501B:
 - Laboratory Meeting Wed Feb 13, 3:00-5:00 pm
- Electricity Test in 2 weeks (Feb 11)
In 3x5 Time...

ERP relies on repeated exposure to condition. How does the process control for exposure/repetition effects?

What psychophysiological measures are used in studying depression?
Foundations:

Basic Electricity
Basic Neurophysiology
Basic Neuroanatomy
But First...

Finishing up from last lecture
A few selected studies to highlight the utility of a psychophysiological approach

- Bauer (1984): Prosopagnosia
- Öhman & Soares (1993): Phobias
- Speigel (1985): Hypnosis
- Deception Detection studies
- Investigation of Persistent Vegetative State
- Brain-Computer Interfaces for assisted communication
Syndromes where interaction with environment difficult or impossible

- Amyotrophic lateral sclerosis (ALS)
- Vegetative States
Farwell & Donchin (1988) *Electroencephalography and clinical Neurophysiology*

- Attempted to develop an applied ERP system for communication without motor system involvement
- For “locked in” patients
CRT Display Used in the Mental Prosthesis

MESSAGE

BRAIN

Choose one letter or command

A G M S Y *
B H N T Z *
C I O U * TALK
D J P V FLN SPAC
E K Q W * BKSP
F L R X SPL QUIT

Fig. 1. CRT display used in the mental prosthesis. The rows and columns of the matrix were flashed alternately. The letters selected by the subject ("B-R-A-I-N") were displayed at the top of the screen in the pilot study.
P300-BCI. Rows and columns of letter strings are lighted in rapid succession. Whenever the desired letter (P) is among the lighted string, a P300 appears in the EEG (after Sellers & Donchin 2006; Piccione et al. 2006).

Figure from Birbaumer, 2006
Can’t we speed things up?

http://www.youtube.com/watch?v=2KtMCX7FfZ0
https://www.youtube.com/watch?v=zqYJQGk5I4M
Fig. 4. A monkey is feeding himself with the aids of a robotic arm by producing the same pattern of neural activity in the motor cortex as would be required to move his own limb. The trajectory of the robot arm is depicted sequentially. In expectancy of the piece of an apple, the monkey protrudes his tongue. From the monkey only the head is visible. (We thank Dr. Andrew Schwartz, from the School of Medicine, University of Pittsburgh, Pittsburgh, USA, for this picture and for the permission of reproduction.)
Operant methods (Birbaumer et al.)

Brain-Computer Communication and Slow Cortical Potentials

Thilo Hinterberger*, Stefan Schmidt, Nicola Neumann, Jürgen Mellinger, Benjamin Blankertz, Gabriel Curio, and Niels Birbaumer
Top right: Senso-motor-rhythm (SMR) oscillations from sensorimotor cortex during inhibition of movement and imagery or execution of movement (EEG trace below). On the left part of the picture is the feedback display with the target goal on the right side of the screen indicating the required SMR increase (target at bottom) or SMR decrease (target at top). The cursor reflecting the actual SMR is depicted in red moving from the right side of the screen toward the target goal.

Birbaumer, 2006
Senso-motor Rhythm Training

- Patients’ task is to move the cursor into the target.
- Cursor movement is indicated by the squares (only one square is visible).
- The cursor moves steadily from left to right, vertical deflections correspond to the SMR amplitude.
- EEG frequency power:
 - Bold line: frequency power spectrum when the cursor had to be moved toward the top target
 - Dashed line: cursor had to be moved toward the bottom target.

Slow Cortical Potentials (SCP)

- Targets are presented at the top or bottom of the screen.
- Patients’ task is to move the cursor (yellow dot) toward the target.
- Cursor moves steadily from left to right and its vertical deflection corresponds to the SCP amplitude.
- A negative SCP amplitude (dashed line) moves the cursor toward the top, positive SCP amplitude (bold line) toward the bottom target.
- Before each trial, a baseline is recorded indicated by the green bar.
- At time point -2 s the task is presented, at -500 ms the baseline is recorded and at zero cursor movement starts.

Kübler & Birbaumer, 2008, Clinical Neurophysiology 119, 2658–2666
BCI using slow cortical potentials (SCP depicted at the top). Patient selects one letter from the letter string on screen (right below) with positive SCPs, the spelled letters appear on top of the screen.
Many Methods

- Many EEG DVs
- Many features to extract
- Many classification algorithms (adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning)
- See it in Action: https://www.youtube.com/watch?v=x_Ba1aEjxp0

For recent review: Lotte et al. (2018) J Neural Engineering
<table>
<thead>
<tr>
<th>EEG pattern</th>
<th>Features</th>
<th>Classifier</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor imagery</td>
<td>Band power</td>
<td>Adaptive LDA with GMM</td>
<td>[24, 83, 129]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adaptive LDA with FCM</td>
<td>[130]</td>
</tr>
<tr>
<td>Motor execution</td>
<td>AR parameters</td>
<td>Adaptive Gaussian classifier</td>
<td>[149]</td>
</tr>
<tr>
<td>Motor imagery</td>
<td>Band power</td>
<td>Adaptive LDA</td>
<td>[132, 219]</td>
</tr>
<tr>
<td>Motor imagery</td>
<td>Band power</td>
<td>Adaptive Gaussian classifier</td>
<td>[131]</td>
</tr>
<tr>
<td>Motor imagery</td>
<td>Band power</td>
<td>Semi-supervised CSP+LDA</td>
<td>[137]</td>
</tr>
<tr>
<td>Motor imagery</td>
<td>Adaptive band power</td>
<td>Adaptive LDA</td>
<td>[63, 64, 220, 221]</td>
</tr>
<tr>
<td>Motor imagery</td>
<td>Adaptive CSP patches</td>
<td>Adaptive LDA</td>
<td>[196]</td>
</tr>
<tr>
<td>Covert attention</td>
<td>Band power</td>
<td>Incremental logistic regression</td>
<td>[133]</td>
</tr>
<tr>
<td>MRP</td>
<td>Band power</td>
<td>Incremental SVM</td>
<td>[9]</td>
</tr>
<tr>
<td>c-VEP</td>
<td>CCA</td>
<td>Adaptive one-class SVM</td>
<td>[206]</td>
</tr>
<tr>
<td>P300</td>
<td>Time points</td>
<td>SWLDA</td>
<td>[239]</td>
</tr>
<tr>
<td>P300</td>
<td>Time points</td>
<td>Semi-supervised SVM</td>
<td>[81, 122, 151]</td>
</tr>
<tr>
<td>P300</td>
<td>Time points</td>
<td>Co-training LDA</td>
<td>[178]</td>
</tr>
<tr>
<td>P300</td>
<td>Time points</td>
<td>Unsupervised linear classifier</td>
<td>[104, 105]</td>
</tr>
<tr>
<td>ErrP</td>
<td>Time points</td>
<td>Unsupervised linear classifier</td>
<td>[78]</td>
</tr>
</tbody>
</table>
Foundations:

Basic Electricity
Basic Neurophysiology
Basic Neuroanatomy
Part I: Basic Electricity

- Prelude
- Atomic Stuff
- Voltage, Resistance, Current, Power, Energy
- DC Series Circuits
- DC Parallel Circuits
- AC Circuits in brief
Prelude: Scale of Measurement

- **Deci** = 10^{-1}
- **Centi** = 10^{-2}
- **Milli** = 10^{-3}
- **Micro** = 10^{-6}
- **Nano** = 10^{-9}
- **Pico** = 10^{-12}
- **Fento** = 10^{-15}

- **Kilo** = 10^3
- **Mega** = 10^6
- **Giga** = 10^9
- **Tera** = 10^{12}

Bits, Bytes, Mega, Giga, Tera (explained)
- 1 bit = a 1 or 0 (b)
- 4 bits = 1 nybble (?)
- 8 bits = 1 byte (B)
- 1024 bytes = 1 Kilobyte (KB)
- 1024 Kilobytes = 1 Megabyte (MB)
- 1024 Megabytes = 1 Gigabyte (GB)
- 1024 Gigabytes = 1 Terabyte (TB)
What’s a Trillion $ (Tera $)

http://www.pagetutor.com/trillion/index.html
The U.S. federal budget deficit for fiscal year 2019 is $985 billion. FY 2019 covers October 1, 2018, through September 30, 2019. The deficit occurs because the U.S. government spending of $4.407 trillion is higher than its revenue of $3.422 trillion. The deficit is 18 percent greater than last year. The FY 2018 budget created an $833 billion deficit.
Prelude: 3 Great Forces

- **Nuclear**: Strong, very short (subatomic) distances …
- **Electrostatic**: Holds all kinds of stuff together in the everyday world
- **Gravitational**: Weakest, but impressive over very large distances and with large masses
Electrostatic Forces

- Due to charged subatomic particles
 - Proton
 - Electron
 - but not Neutron

- The Law:
 - Unlike Charges Attract
 - Like Charges Repel
Free Electrons

- Some electrons can be easily displaced

Positive Charges and Electrons are Present in Equal Quantities in the Rod and Fur

Electrons are Transferred from the Fur to the Rod

Demo
Static Electricity

- Friction with Poor Conductors
- Electrons displaced from one substance to the other (e.g. Hair to comb, carpet to body)
- Leads to voltage potential (i.e., difference)
Basic Electricity by Analogy
Direction of Electron Movement

Flow of positive charge

DC
Anyway!
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
<th>aka</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Voltage</td>
<td>Electromotive</td>
<td>Volts (V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Force</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
<td>Rate of Flow</td>
<td>Amperes (A)</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
<td>--</td>
<td>Ohm (Ω)</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
<td>Rate of work</td>
<td>Watt (w)</td>
</tr>
<tr>
<td>W</td>
<td>Energy</td>
<td>Ability to do</td>
<td>Watt-Second</td>
</tr>
<tr>
<td></td>
<td></td>
<td>work</td>
<td>(Joule)</td>
</tr>
</tbody>
</table>
Ohm’s Law

\[
I = \frac{E}{R}
\]

\[
E = IR
\]

\[
R = \frac{E}{I}
\]

See also: http://www.falstad.com/circuit/e-ohms.html
Ohm’s Law

\[I = \frac{E}{R} \]

\[E = IR \]

\[R = \frac{E}{I} \]
Ohm's Triangle

Cover the variable you want to find and perform the resulting calculation (Multiplication/Division) as indicated.
RESISTANCE IS NOT FUTILE.
IT’S VOLTAGE DIVIDED BY CURRENT.
Why are we talking about this stuff?

- We will be recording electrical signals!
- Spoiler alert: Neurons communicate using electrical principles
- Lab Safety
 - see https://www.youtube.com/watch?v=3XVtUUtfjJE
Basic Circuit

\[E = 6 \text{v} \]

\[R = 3 \Omega \]

\[I = ? \]

Volt-Ohm Meter Demo
Series Circuit

\[R_T = R_1 + R_2 \]

\[E = 6 \text{v} \]

\[R_1 = 2 \Omega \]

\[R_2 = 1 \Omega \]

\[I = ? \]

\[E_{R_1} = ? \]

\[E_{R_2} = ? \]
By Analogy: Series Vs Parallel

\[\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]
Parallel Circuit

\[\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]

- \(R_T = ? \)
- \(I_1 = ? \)
- \(I_2 = ? \)
- \(I_3 = ? \)

\[\text{E}_s = 50 \text{ v.} \]

\[R_1 = 25 \Omega \]

\[R_2 = 10 \Omega \]

\[R_3 = 50 \Omega \]
Complex Circuits

Find the current flowing in the circuit, and the voltage drops.

YIKES! Need to reduce. Start at the parallel combination of 20k and 5k resistors; it is replaced with its effective resistance of 4k

\[\frac{1}{R_{\text{equiv}}} = \frac{1}{20} + \frac{1}{5} = \frac{1}{20} + \frac{4}{20} = \frac{5}{20} = \frac{1}{4} \].

This and subsequent slides on this circuit adapted from:
"http://www.physics.udel.edu/~watson/phys345/examples/effective-circuit.html"
Looking Better. The effective resistance of 4k is in series with the actual resistance of 8k, leading to replacement by its effective resistance of 12k.

\[R_{\text{equiv}} = 4k + 8k \]
Better Still. Now there is a parallel combination of 12k and 6k resistors; it is replaced with its effective resistance of 4k
\[\frac{1}{R_{\text{equiv}}} = \frac{1}{12} + \frac{1}{6} = \frac{1}{12} + \frac{2}{12} = \frac{3}{12} = \frac{1}{4} \].
Now Series: Almost Simple

Now we have a simple series circuit!
Finally, the equivalent resistance for the entire circuit is 9k.
\[R_{\text{equiv}} = 4k + 5k \].
Now Series: Almost Simple

\[I = ? \]

\[I = \frac{E}{R} = \frac{9 \text{ V}}{9 \text{ k}} = 1 \text{ mA} \]
The real 5k resistor and the effective 4k resistance each have 1 mA of current since they are in series. Thus the 4k resistance has 4V of voltage difference across it (by Ohm's law).
Breaking the 4k resistance into its component parts (in parallel), we find that 2/3 mA of current flows in the 6k resistor and 1/3 mA flows in the effective resistance of 12k.

\[
I = \frac{E}{R} = \frac{4}{6k} = \frac{2}{3} \text{ mA}
\]

\[
I = \frac{E}{R} = \frac{4}{12k} = \frac{1}{3} \text{ mA}
\]
Breaking the 12k resistance into its component parts (in series), we find that there is $\frac{8}{3}$ V across the 8k resistor and $\frac{4}{3}$ V across the effective resistance of 4k.

$E = IR = 4\, K\Omega \times \frac{1}{3} \, mA = \frac{4}{3} \, V$

$E = IR = 8\, K\Omega \times \frac{1}{3} \, mA = \frac{8}{3} \, V$
Finally, breaking the 4k resistance into its component parts (in parallel), we find that 1/15 mA of current flows in the 20k resistor and 4/15 mA flows in the 5k resistor.

\[I = \frac{E}{R} = \frac{4/3V}{20k\Omega} = \frac{4}{60} mA = \frac{1}{15} mA \]

\[I = \frac{E}{R} = \frac{4/3V}{5k\Omega} = \frac{4}{15} mA \]
Summarizing:

1. Current through the battery? 1 mA
2. Current through the 8k resistor? 1/3 mA
3. Voltage difference across the 20k resistor? 4/3 V
In Real Life…

B. Marshall-Goodell, L. Tassinary, and J. Cacioppo

a) Series Circuit

b) Parallel Circuit
Capacitance

Capacitor = two conductors separated by a dielectric.
Dielectric = material that is a good insulator (incapable of passing electrical current), but is capable of passing electrical fields of force. Examples include glass, porcelain.

Charged Capacitor = more electrons on one conductor plate than on the other.
Capacitance

- Two closely spaced plates – offer essentially no resistance

- As negative charge built up on first plate due to flow of electrons, a positive charge would build up on second plate
 - The current charges the plates of the capacitor, but does not flow through the capacitor, itself.
Capacitance

Charging – current flows until capacitor is fully charged, then stops

Discharging – current flows in reverse direction until capacitor fully discharged
Capacitance – Size Matters

Which has more capacity?

More capacity, more current flows before capacitor is fully charged
Capacitor Time Constants

Over time...
- Capacitor’s voltage increases
- Current flow grinds to a halt

The capacitor’s time constant $T_C =$
- The time in seconds for it to become 63.2% charged
- The time in seconds for current flow have slowed by 63.2% from its starting value

\[v_c = V_s (1 - e^{-t/RC}) \]
\[i_c = \frac{V_s}{R} e^{-t/RC} \]
AC Circuits

DC Circuit: Current Flow is unidirectional, from $-$ to $+$

AC Circuit: Current Flow switches direction periodically (at a given frequency in Hz)
AC Circuits and Capacitance

- Slowly alternating signals
 - will fully charge capacitor, and signal will be impeded

- Rapidly alternating signals
 - will not fully charge the capacitor before the direction of flow reverses, allowing signals to pass unimpeded

http://micro.magnet.fsu.edu/electromag/java/capacitor/

https://www.youtube.com/watch?v=aoIH0aTnOhk
Using Capacitors to make Low Pass Filters

What will happen to fast signals; slow signals?
Using Capacitors to make High Pass Filters

What will happen to fast signals; slow signals?
Part II: Basic Neurophysiology

- Three basic units inside the brain
 - Glial cells
 - Extracellular space: not really space
 - The neuron
 - Three types:
 - Sensory
 - Motor
 - Interneuron
Withdrawal Reflex

- Pain receptors in skin
- Spinal cord
- Cell body of association neuron
- Axon of afferent neuron
- Cell body of afferent neuron
- Dendrite of afferent neuron
- Axon of efferent neuron
- Muscle contracts and withdraws part being stimulated
- Hot object
- Direction of impulse
The Common Household Neuron

- Vary widely, but all have:
 - Cell body (soma)
 - Dendrites
 - Axon
 - Myelin sheath
 - Nodes of Ranvier
 - Microtubules
 - Terminal buttons (AKA synaptic knob)
- Nerve = a bundle of axons
Neuron Structure

- Cell body
- Dendrites (receive impulses)
- Axon (transmits impulses)
- Myelin sheath
- Nodes of Ranvier
- Axon terminals
- Branch
Myelin Sheath
The Synapse

Synapse

Axon terminal

Axon

Cell body

Synapse

Synapse
Neural Communication

- Axonal Conduction (electro-chemical)
- Synaptic Transmission (chemico-eletrical)
Axonal Conduction

- **Resting potential**
 - Inside of cell slightly negative
 - Two forces act upon these ions
 - Concentration gradient--osmotic force
 - Electromotive force
 - Equilibrium potential:
 - $E_{ion} = \frac{R \cdot T \cdot z \cdot F}{z} \cdot \ln\left(\frac{\text{Conc}_{\text{Ex}}}{\text{Conc}_{\text{In}}}\right)$
 - where R is gas constant, T is temperature, z is ionic valence, and F is Faraday's constant.

- **The Hodgkin & Huxley Model**
Axonal Conduction

- **Depolarization**
 - Threshold
 - Axon Hillock
 - Na ions rush in resulting in:
 - **Action potential**;
 - All or none phenomenon, high frequency
 - Afterpotentials; hyperpolarizing, depolarizing; slow frequency
 - Changes in membrane permeabilities
 - Propagation

- **Refractory period**
Fig. 2-3. Intra- and extracellular distribution of the ions. On both sides of the membrane, the different ions are indicated by circles of different diameter, proportional in each case to the diameter of the (hydrated) ion. A⁻ designates the large intracellular protein anions. The passages through the membrane, the "pores," are just large enough to permit the K⁺ ions to diffuse through.
Synaptic Transmission

- Not an all-or-none phenomenon
- **Synaptic gap** or cleft at the synaptic junction
- Single axon splits near end--**terminal arborization**
- As action potential arrives
 - Synaptic vesicles migrate to cell membrane fuse and release
 - Neurotransmitters diffuse across the synaptic cleft
 - combine with **post-synaptic receptors**
 - When neurotransmitter binds to a receptor on the post-synaptic cell, a slow electrical potential (**post-synaptic potential**) is generated:
 - 5 to 20 mV at peak amplitude
 - 20-150 msec in duration (50 to 6 Hz)
Synaptic Transmission

- Post-synaptic potentials (PSP's);
 - **Excitatory**
 - **Inhibitory**
 - **Interaction**

- **Summation/Integration**
 - **temporal**
 - **spatial**
 - decremental conduction on dendrites and soma
 - axon hillock is critical area at which threshold must be reached

- **After release** of neurotransmitter,
 - reuptake
 - degradation

- **Functional Synaptic Units**
1. Within the axons of the neuron are neurotransmitters, which are held in storage-like vesicles until they are released when the neuron is stimulated.

2. The small space between the axon terminal and the dendrite of the next axon is called the synapse. An action potential stimulates the release of neurotransmitters across the synapse.

3. The neurotransmitter binds itself to the receptor sites on dendrites of the next neuron, causing a change in potential.

Reuptake
Figure 3-10. Excitatory postsynaptic potentials, recorded intracellularly from a motor neuron. Afferents in the peripheral nerve from the associated muscle are stimulated electrically with a current of

Fig. 3-11. Inhibitory postsynaptic potentials. Experimental arrangement as in Fig. 3-10, except that here an antagonist nerve is stimulated.
Fig. 3-14. The effect of an IPSP on the action potential; experimental arrangement as in Fig. 3-13. The homonymous nerve is stimulated strongly enough to produce a supra-threshold EPSP (left). On the right, the antagonist nerve is stimulated about 3 ms before the homonymous nerve. The equilibrium potentials of Na⁺, K⁺, Cl⁻, EPSP, and IPSP are shown.
Spatial Summation. Figure 5.11

Spatial summation

Stimulus

A only

B only

A + B
Temporal Summation. Figure 5.11
Part III: Basic Neuroanatomy
If the human brain were so simple that we could understand it, we would be so simple that we couldn't.
V. Organization of the nervous system

A. Central nervous system

1. Brain
2. Spinal cord
V. Organization of the nervous system

B. Peripheral nervous system

1. Somatic system

2. Autonomic system; two branches work in generally antagonistic fashion
Somatic System

- Descending motor tracts within spinal cord synapse at approximate level of exit
- Post-synaptic neuron directly innervates target
- 2-neuron system
Autonomic System

- Descending motor tracts within spinal cord synapse not necessarily at level of exit
- After exit, synapse again before innervating target
- 3-neuron system
V. Organization of the nervous system

B. Peripheral nervous system

2. Autonomic system

a. Sympathetic nervous system
 1. tends to have system-wide effects
 2. flight or flight; activity

b. Parasympathetic nervous system
 1. tends to affect one organ at a time
 2. quiescent processes--digestion, protects and conserves energy
<table>
<thead>
<tr>
<th>Sympathetic</th>
<th>Parasympathetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prepares body for action</td>
<td>• Restores and maintains body resources</td>
</tr>
<tr>
<td>• Catabolic processes that require energy</td>
<td>• Anabolic processes that increase the body's</td>
</tr>
<tr>
<td>expenditure</td>
<td>supply of stored energy</td>
</tr>
<tr>
<td>• After synapse within grey-matter of spinal</td>
<td>• After synapse within grey-matter of spinal</td>
</tr>
<tr>
<td>cord, the post-synaptic (pre-ganglionic) neurons</td>
<td>cord, the post-synaptic (pre-ganglionic) neurons</td>
</tr>
<tr>
<td>exit in thoracic or lumbar regions</td>
<td>exit in cranial (especially cranial nerve #10,</td>
</tr>
<tr>
<td></td>
<td>Vagus) or sacral regions</td>
</tr>
<tr>
<td>• Thoracolumbar system</td>
<td>• Craniosacral system</td>
</tr>
<tr>
<td>• pre-ganglionic neurons travel to sympathetic</td>
<td>• pre-ganglionic neurons travel some distance</td>
</tr>
<tr>
<td>chain (series of connected sympathetic</td>
<td>before synapsing in the parasympathetic ganglia</td>
</tr>
<tr>
<td>ganglia "swelling or knot", chain of neurons)</td>
<td>located in the immediate vicinity of the target</td>
</tr>
<tr>
<td>• post-ganglionic neurons generally travel a</td>
<td>organ</td>
</tr>
<tr>
<td>long distance to target organ</td>
<td>• post-ganglionic neurons are therefore</td>
</tr>
<tr>
<td></td>
<td>typically quite short</td>
</tr>
<tr>
<td>Sympathetic</td>
<td>Parasympathetic</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| Pharmacologically,
• All synapses within the sympathetic ganglia are acetylcholinergic
• Terminal buttons on target organs are noradrenergic (except sweat glands: acetylcholinergic)
• Quick diffuse action of system due to the sympathetic ganglionic chain prepares organism for *fight-or-flight*; in synchrony, many systems activate
• dilation of bronchioles
• dilation of pupils (the better to see you with my dear)
• constriction of blood vessels to skin and gastrointestinal system
• inhibition of gastrointestinal system
• increased BP, stroke volume, cardiac output
• increased sweating | Pharmacologically,
• All synapses acetylcholinergic: both pre- and post-ganglionic neurons
• Slower and more specific action of this system works to restore and maintain bodily resources; only changes that are necessary generally occur (not all systems in synchrony)
• decreased heart rate, blood pressure
• constriction of pupils and bronchioles
• increases in digestive functions |
VI. The common household brain

- Commentary
- More commentary
Brain's Main Structures

- Cerebrum
- Thalamus
- Hypothalamus
- Pons
- Medulla
- Cerebellum
- Spinal cord
VI. The common household brain
A. Overview of brain
 1. The primitive central core
 2. Limbic system, or the “Inner Lizard”
 3. Cerebrum (AKA cerebral hemispheres)
 a. Ontogeny
 b. Phylogeny
 c. Ontogeny recapitulates phylogeny
 4. These three layers are interconnected extensively; do not function independently

Next
The Human Brain: Major Areas

Forebrain

Midbrain

Hindbrain
Principal Structures of the Limbic System

- Thalamus
- Hypothalamus
- Amygdala
- Basal ganglia
The Evolution of the Cerebrum

(a) Bass
(b) Frog
(c) Opossum
(d) Warbler
(e) Pit viper
(f) Bobcat
(g) Macaque
(h) Chimpanzee
(i) Human
“… this history of the embryo (ontogeny) must be completed by a second, equally valuable, and closely connected branch of thought - the history of race (phylogeny). Both of these branches of evolutionary science, are, in my opinion, in the closest causal connection; this arises from the reciprocal action of the laws of heredity and adaptation... 'ontogenesis is a brief and rapid recapitulation of phylogenesis, determined by the physiological functions of heredity (generation) and adaptation (maintenance).''

Haeckel, E. 1899. _Riddle of the Universe at the Close of the Nineteenth Century._
Directions please!

- lateral--side; medial--middle
- anterior--front; posterior/dorsal--back
- rostral--towards the nose; caudal--towards the tail
- ipsilateral--same; contralateral--opposite
- proximal--toward the soma; distal--away from the soma
- efferent--output/motor; afferent--receiving/sensory
B. Brain Specifics

1. Primitive central core
 a. **Cerebellum**
 1. "little brain" located to rear of brain stem
 2. involved in smooth coordination of movements
 3. learning of complex motor activities (e.g., piano, skiing)
B. Brain Specifics

1. Primitive central core
 b. Thalamus & Hypothalamus: located just above the brain stem & tucked inside the cerebral hemispheres

 1. Thalamus is a relay station for sensory information
 a. "Gateway to the cortex"
 b. coming from spinal cord to cortex
 c. taste touch hearing vision -- olfaction is exception

 2. Hypothalamus
 a. literally = "under thalamus" ; much smaller, but very important
 b. 4 F's:
B. Brain Specifics

1. Primitive central core
 c. Reticular system
 a. diffuse from brainstem to thalamus
 b. 3 A's, arousal, awareness, attention
B. Brain Specifics

2. Limbic system
 a. a group of structures lying along the innermost edge of the cerebral hemispheres
 b. involved in instinctual behaviors in lower animals (caring for young, mating, fleeing from attackers, fleeing from prey)
 c. involved in memory and emotion in humans
 d. Especially important structures within the Limbic system:
 i. Hippocampus
 ii. Amygdala
The common household brain

3. The cerebral hemispheres
 a. Grey matter vs white matter
Four Lobes of the Cerebral Cortex

- Frontal lobe
- Parietal lobe
- Occipital lobe
- Temporal lobe
3. The cerebral hemispheres
 b. Four lobes:
 1. frontal
 2. parietal
 3. occipital
 4. temporal
3. The cerebral hemispheres
 b. Motor area
 1. topographic organization--Homunculus
 2. contralateral control of body
3. The cerebral hemispheres

d. Somatosensory area
 1. heat, cold, touch, pain, sense of body movement
 2. contralateral
 3. space appropriated in accord to amount of use or need
The common household brain

3. The cerebral hemispheres
 e. Visual area
 1. Contralateral visual field
 2. Primary vs Secondary
f. Auditory area
 1. bilateral representation
 2. contralateral stronger
The common household brain

g. Association areas
 1. functions which are not directly sensory or motor
 2. Examples:
 a. motor planning
 b. thought
 c. speech
 d. problem solving
 e. complex object recognition (e.g. prosopagnosia)
 f. Phylogeny of Association Cortex
Luria’s Functional Systems

1. Primary
 a. Motor (precentral gyrus);
 (1) topographic organization
 b. Sensory
 (1) Somatosensory (post central gyrus)
 (2) Visual (Occipital cortex)
 (3) Auditory (Banks of Lateral Sulcus)
Luria’s Functional Systems

2. Secondary
 a. Motor (rostral to precentral gyrus): motor programming, sequences of movements
 b. Sensory (caudal to postcentral gyrus): unimodal sensory integration
Luria’s Functional Systems

3. Tertiary
 a. Motor (frontal lobes): goal directed acts, long-term & short-term planning, internal manipulation of "ideas" and representational systems that are basic to abstract thought

 b. Sensory (parietal-temporal-occipital junction): cross-modal integration of sensory information
Four Lobes of the Cerebral Cortex

- Frontal lobe
- Parietal lobe
- Occipital lobe
- Temporal lobe
“The left side of your brain is good at math and science. The right side is creative and playful. You’ll get a raise as soon as you have the right side surgically removed.”