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Introduction
• Functional connectivity (FC) is defined as the statistical 

interdependence between regions of interest (ROIs).

• Spatiotemporal FC patterns can change dynamically within 

the constraints of a fixed anatomical structure.
• The averaged spatial pattern over time of FC may not resemble 

any of the configurations that occur transiently within the 

scanning period [1].

• Geodesic regression is a new method to look at time-resolved 

FC that allows us to:
• smoothly interpolate between arbitrary starting and ending FC 

configurations, and 

• study higher-order aspects of variability, such as the rate at which 

coherence and phase synchronization are modulated.

• Baseline-correction for FC matrices:
• FC dynamics may appear manifestly different, but those 

differences could be explained by differences in the initial 

conditions.

Results

Figure 1: The group of 

positive-definite (HPD) 

covariance matrices forms a 

smooth and continuous 

manifold [2].

• The current study provides:
• strong evidence for dynamic FC in single-trial EEG time-series;

• evidence that FC dynamics differs between incorrect and correct

responses on a forced-choice speeded-response task.

• Independent of baseline differences in FC.

• Low hit rate could be due to sensitivity to window width or

montage choices.

• The current study investigated theta-band FC dynamics in 

EEG time-series on a forced-choice speeded-response flanker 

task.

• A novel statistical test is used to detect correct/incorrect response 

differences in FC dynamics, independent of baseline FC.

• Does FC dynamics differ between correct/ incorrect 

trials?
• Null hypothesis: mean tangent vectors belong to the same 

equivalence class.

• Does FC differ between correct/incorrect trials?
• Null hypothesis: length of the geodesic connecting the condition 

means is not significantly greater than zero.

Figure 3: The average 𝑅2 for 

geodesic regression algorithm on 

single-trial EEG was 0.765 (right):
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• The matrix exponential is the generating function for the 

group of HPD matrices.
• Given any Hermitian matrix A, there is a unique corresponding 

positive-definite matrix 𝑒𝐴, and inverse matrix 𝑒−𝐴.

• Infinitesimal transformations from one position to the next 

can be integrated over time, yielding a geodesic 

parameterized by t, 𝑒𝑡𝐴.
• The set of geodesics emanating from the identity element at t=0 

represents the set of all possible solutions to linear dynamical 

systems of the form:

ሶ𝑋 = 𝐴𝑋
𝑋 𝑡 = 𝑒𝑡𝐴𝑋(0)

• In general, geodesics may emanate from any point on the 

HPD manifold.
• Given a tangent vector V and base-point P, an integral curve can be 

generated.

• Baseline-correction: 
• The HPD manifold is not closed under subtraction; the difference 

between two HPD matrices may not be HPD.

• Solution: transport tangent vector to identity at each time-point.

• There is an equivalence class on the manifold, such that multiple 

vectors emanating from different points map onto the same 

vector emanating from identity [3].

• represents the predicted change in FC, relative to baseline FC.

• Parallel Transport: defined with respect to an affine connection 

between tangent spaces, such that moving V along its associated 

geodesic maps tangent vectors into one another:

Γ𝑠→𝑡𝑉 𝑠 = 𝑉 𝑡

• An invariant distance measure can be defined by transporting 

V to identity and computing the matrix inner-product with itself 

[4]:

𝑉 𝑉 𝑃 = 𝑇𝑟 𝑃−1/2𝑉𝑃−1𝑉𝑃−1/2

• Geodesic regression minimizes the sum-of-squared geodesic 

distances between sample covariance matrices and their 

predicted position on the geodesic [5].
• The output yields the best-fit solutions for P and V. 

Model

Figure 2: A) A significant fronto-central error-related negativity (ERN) 

was detected in 27/30 participants.  B) There was significantly more 

fronto-central theta coherence in 21/30 participants following 

incorrect trials, compared to correct trials.
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Figure 4: A) FC differed between correct/incorrect trials in 21/30 

participants. B) FC differences correlated with ERN Z score (r = 0.714).

Figure 5: A) FC dynamics differed between correct/incorrect trials in 

14/30 participants (below).  B) FC dynamics were correlated with 

ERN Z score (r = 0.582).



Introduction 
Measures such as phase synchronization and coherence have been used to infer functional 

relationships in EEG time-series, but they suffer from serious limitations posed by non-stationary 

confounds (Zalesky & Breakspear, 2015; Zhan & Halliday, 2005).  In general, parameters may change 
continuously over the estimation interval.  However, these measures require many samples, 

extending over large epochs.  Matrices must be estimated from short windows such that the change in 

parameters is negligible over the interval, balanced by the need for enough samples to get valid 

estimates.  

The approach considered in this report explicitly models non-stationary functional connectivity by 
fitting a regression line in the space of functional configurations, to smoothly interpolate between 

arbitrary starting and ending configurations.  This method generalizes linear regression to multi-

dimensional curved manifolds, representing the shortest possible path between configurations (Fletcher, 

2013). This approach is fully multivariate, controlling for multiple comparisons.  Moreover, this 
framework allows for a novel baseline-correction that yields the predicted change in functional 
connectivity relative to the initial configuration.  This report includes algorithms to fit the geodesic 

regression model for single-trial EEG epochs, characterize the quality of model fit, and compute the 

geometric mean of models across trials.  Differences between conditions are assessed via a novel non-

parametric permutation omnibus test at the subject level.  Critically, this test can reveal differences in 
functional connectivity dynamics, independent of baseline functional connectivity.   

This approach can be applied across research domains and imaging modalities, but the current 

investigation focuses on functional connectivity as measured by EEG during a forced-choice speeded-

response task.  During the task, participants respond with a button press to centrally presented letter 

stimuli, while ignoring flanking letters to the left and right of the target (figure 1).   

 

Geodesic Regression 

Geodesic regression amounts to finding the best-fit solution that minimizes the sum-of-squared 

geodesic distances between the sample covariance matrices and their predicted position on the 

Figure 1: Participants completed a modified Eriksen Flankers task 
(Eriksen and Eriksen, 1974; Eriksen and Schultz, 1979).  They were 
asked to press one of two response buttons using their thumbs to 
identify the center letter in a string that is either congruent (e.g., 
MMMMM; 200 trials) or incongruent (e.g., NNMNN; 200 trials) 
with the flanking stimuli.  Participants should be more likely to make 
an error when the central letter is incongruent with the flanking 
stimuli.  Ten blocks tested different pairs of letters and their 
reversals, 20 trials each, for a total of 400 trials.  Target-hand 
mappings were reversed after each block to increase response 
conflict.  Stimuli were presented for 200 ms, and the flanking stimuli 
were presented 33 ms prior to the target, with an SOA of 100 ms.  
The basic trial sequence is depicted (left).  Post-response connectivity 
is examined between response-onset and feedback presentation. 

 



geodesic.  In this report, the geodesic regression algorithm is initialized with a zero length tangent vector 

emanating from the geometric mean of all the samples.  Sample covariance matrices are initially 

estimated on the interval [-450,-300] preceding the response.  This window is shifted in 13 equally 

spaced, 150 ms steps to generate the set of covariance matrices to be entered into the geodesic 

regression algorithm.  Every matrix is associated with a particular point on the geodesic, obtained by 

scaling t such that it lies on the interval 0 to 1, over the length of the geodesic segment.  The model 

definition is given by (Fletcher, 2013): 

𝑦𝑦 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃, 𝑡𝑡𝑖𝑖𝑉𝑉), 𝜖𝜖) 

where 𝜖𝜖 is the residual vector, and 𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃, 𝑡𝑡𝑖𝑖𝑉𝑉) is the predicted covariance on the geodesic when t = ti.  

Guesses for P and V are modified iteratively, until the sum-of-squared geodesic distances is minimized.  

The solution is given by minimizing the objective function: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
(𝑃𝑃,𝑉𝑉)  𝑂𝑂 =

1
2
�⟨Log(𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃, 𝑡𝑡𝑖𝑖𝑉𝑉),𝑦𝑦𝑖𝑖)|Log(𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃, 𝑡𝑡𝑖𝑖𝑉𝑉),𝑦𝑦𝑖𝑖)⟩𝑃𝑃

𝑁𝑁

𝑖𝑖=1

 

For demonstration, samples were drawn from a bivariate normal distribution with unit variances, and 

transformed such that they lie on the surface of a 2-torus.  A final and ending configuration were chosen 

at random, and a geodesic was generated, interpolating between them (figure 3).    

Baseline Correction 

  Baseline functional connectivity is likely to be non-zero in most participants, on most trials.  Even in 

the absence of task or instructions, participants experience general arousal in the novel experimental 

environment, and resting-state dynamics are intrinsically non-stationary.  Moreover, during engaging 

tasks where participants have to exercise cognitive control across domains, such as perceptual 

discrimination and motor preparation, participants may exhibit anticipatory changes in functional 

connectivity.   

Functional connectivity dynamics may look very different, but those differences may be explained by 

differences in the initial conditions.  There is an equivalence class on the manifold, such that multiple 

vectors emanating from different points map onto the same vector emanating from the identity element, 

Figure 3: Geodesic regression on a 
torus.  A 2-torus undergoes continuous 
deformations and rotations as the 
covariance changes along the geodesic.  
The geodesic was segmented into 100 
time-steps, with a sample covariance 
matrix for each time-step.  Each matrix 
was estimated from 3000 samples.  The 
resulting 2x2 HPD matrices were 
entered into the geodesic regression 
algorithm (R2=.9991). 



under the parallel transport (Sengupta, Tozzi, Cooray, Douglas, & Friston, 2016).  The relationship 

between these models is described by an isometric (distance-preserving) coordinate transformation on 

the HPD manifold.  The proposed baseline-correction yields the predicted change in covariance, relative 

to the base point.  On each trial, V is transported to the identity element: P−1/2VP−1/2.   

Permutation Significance Testing 

Regression Model 

The significance of the geodesic regression model can be evaluated using robust permutation statistics.  

Under the null hypothesis, the length of the geodesic is zero, and the base point is equal to the geometric 

mean of all the samples (𝑦𝑦).  Therefore, the samples are exchangeable under the null hypothesis.  

Geodesic regression is performed over several hundred permutation, shuffling the condition labels on 

each iteration.  The R2 is given by the ratio of the sum-of-squared geodesic distances between the 

predicted and observed covariance matrices, and the sum-of-squared distances to the geometric mean of 

all the samples: 

𝑅𝑅2 = 1 −
∑ ⟨Log(𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃, 𝑡𝑡𝑖𝑖𝑉𝑉),𝑦𝑦𝑖𝑖)|Log(𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃, 𝑡𝑡𝑖𝑖𝑉𝑉),𝑦𝑦𝑖𝑖)⟩𝑃𝑃𝑁𝑁
𝑖𝑖=1

∑ ⟨Log(𝑦𝑦,𝑦𝑦𝑖𝑖)|Log(𝑦𝑦,𝑦𝑦𝑖𝑖)⟩𝑃𝑃𝑁𝑁
𝑖𝑖=1

 

Over several hundred permutations, the distribution of the expected R2 under the null hypothesis is 

constructed.  Each R2 value is Fischer-Z transformed.  The non-parametric construction of the null 

distribution admits a robust significance test by simply counting the number of permutations with an R2 

value exceeding the true R2.  If the fraction of permutations that exceeds the true R2 is not larger than 

threshold, a statistically significant effect can be inferred.   

Omnibus Test on the Manifold 

An omnibus test can be constructed on the manifold to evaluate whether the geodesic distance 

between conditions is significantly greater than zero.  Such a test would indicate whether or not functional 

connectivity is statistically significantly different between conditions, but it does not indicate where the 

differences occur.  Under the null hypothesis, the length of the geodesic connecting the mean of each 

condition is zero, and the base point is equal to the geometric mean of all the samples.  This test is 

equivalent to geodesic regression with dummy coding, such that all samples are at the endpoints of the 

geodesic.  Since the group labels are exchangeable, robust permutation statistics can be performed as 

before. After several hundred permutations, the true R2 is compared with the distribution of R2 under the 

null hypothesis. 

Omnibus Test on the Tangent Bundle 

Differences in functional connectivity dynamics, between conditions, can be assessed with a 

significance test on the tangent bundle.  The algorithm is initialized by transporting each tangent vector to 

identity.  Following the baseline-correction procedure, vectors all lie in the same linear tangent space, so 

they can be directly compared.  The mean tangent vector is computed for each condition, v1 and v2.  



Under the null hypothesis, ‖v1 − v2‖ = 0, so the condition labels are exchangeable and permutation 

testing can be performed.  

Data Collection, Preprocessing and Analysis 
Sample Description 

Thirty medically healthy young adults age 18-23 were recruited from the University of Arizona subject 

pool in exchange for course credit.  All participants reported they were free from past neurological trauma 

and psychopathology as delineated in the Diagnostic and Statistical Manual (DSM), 5th edition, had 

normal or corrected-to-normal vision, and were free from current psychoactive medication use.   

EEG Data Collection 

EEG was recorded from 64 scalp electrode sites using Synamps2 amplifiers (bandpass 0.05 to 100 Hz) 

at a 1,000 Hz sampling rate using a stretch Ag-AgCl electrode cap, with impedances < 15 kΩ.  Sensors 

were placed using adhesive collars above and below the left eye to measure ocular movement, on the 

side of the eyes, and behind each ear to allow for electronic referencing. At the locations of these facial 

sensors, skin was prepped using Omni-prep and an alcohol wipe. All sites were grounded anterior to Fz 

and referenced online posterior to Cz.  

EEG Preprocessing 

All files were screened by hand to ensure fidelity, removing any residual and EMG artifacts.  A 3 Hz 

digital highpass FIR filter is applied in post-processing.  The Gratton method was used for ocular artifact 

correction (Gratton, Coles, & Donchin, 1983).  All participants had EEG data for at least 10 epochs for 

each condition (correct, incorrect).  Generally, 

participants responded correctly far more often than 

they respond incorrectly.  To control for differences in 

trial count, correct and incorrect trials were match for 

reaction time in equal numbers.  For example, if 

there were 25 incorrect responses, then 25 correct 

responses with the most similar reaction times were 

chosen for comparison.  All EEG epochs were re-

referenced offline to the average reference.  After re-

referencing, the scalp channel montage was down-

sampled to 18 electrodes to reduce computational 

run-time (figure 4).  Trials were epoched [-1500 

2000] ms peri-stimulus.  Such a long window was 

used to accommodate edge artifacts from the 

wavelet convolution. 

Time–frequency calculations were computed using custom-written Matlab (The MathWorks) routines 

based on (M. X. Cohen, 2014).  The EEG time-series for each epoch were convolved with a set of 

Figure 4: Scalp electrode positions 



complex Morlet wavelets, defined as a Gaussian-windowed complex sinusoid: 𝑒𝑒2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖2/2𝜎𝜎2 where t is 

time, f is frequency (which increased from 3 to 50 Hz in 40 logarithmically spaced steps), and 𝜎𝜎 defines 

the width of each frequency band, in cycles, set according to 4.5/(2𝜋𝜋f ) (Trujillo and Allen, 2007).  The 

result of the convolution is a similarity measure between the EEG signal and complex sinusoids.  The 

instantaneous phase at each electrode can be estimated from the resulting analytic signal: 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎(𝑅𝑅𝑒𝑒𝑎𝑎𝑅𝑅(𝑠𝑠)2/𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠)2) 

Where s is the complex signal at a given time.  Each epoch was then cut into a smaller epoch containing 

data 300 ms prior to and following the response, for a total of 600 ms on each trial.   
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