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Abstract
This paper focuses on pragmatic issues in obtaining measures of cardiac vagal control, and overviews a set of freely available software tools for

obtaining several widely used metrics that putatively reflect sympathetic and/or parasympathetic contributions to cardiac chronotropy. After an

overview of those metrics, and a discussion of potential confounds and extraneous influences, an empirical examination of the relationships

amongst these metrics is provided. This study examined 10 metrics in 96 unselected college students under conditions of resting baseline and serial

paced arithmetic. Intercorrelations between metrics were very high. Factor analyses were conducted on the metrics reflecting variability in cardiac

rate, once at baseline and again during mental arithmetic. Factor structure was highly stable across tasks, and included a factor that had high

loadings of all variables except Toichi’s ‘‘cardiac sympathetic index’’ (CSI), and a second factor that was defined predominantly by the CSI.

Although generally highly correlated, the various metrics responded differently under challenge.
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1. Introduction

Measures of heart rate variability (HRV) and respiratory

sinus arrhythmia (RSA) in particular have been used to index

autonomic function and reactivity in relation to diverse

phenomena, such as diabetes (Ewing et al., 1981), hyperten-

sion and other cardiovascular disease (Masi et al., 2007;

Thayer and Lane, 2007), attentional capacity (Porges, 1992),

emotion regulation (Calkins and Johnson, 1998), coronary

artery disease (Carney et al., 1988), daily stressors (Fabes and

Eisenberg, 1997), major depression (Chambers and Allen,

2002; Rottenberg, 2007), anxiety (Friedman, 2007), and

children’s levels of empathy (Eisenberg et al., 1996), among

many others. Numerous metrics have been used to summarize

variability in cardiac chronotropy in the literature, but the

selection of particular metrics is highly variable across studies,

and metrics are often used interchangeably, or with little

justification. Rarely have the various metrics been compared to
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assess the degree to which they assess similar constructs. This

article will provide a pragmatic overview of obtaining

measures of heart rate variability, followed by an empirical

comparison of some of the more popular and easily obtained

metrics of cardiac chronotropy. Finally, a suite of freely

available software tools is introduced for converting EKG

signals to metrics that may be used as indices of cardiac vagal

control, in the hope that more researchers may incorporate such

indices into their experimental protocols.

1.1. The physiological basis of heart rate variability

Heart rate variability results from a dynamic relationship

between sympathetic and parasympathetic nervous system

influences. HRV can occur from a co-activation, coinhibition,

or activation of one with an inhibition of the other division of

the autonomic nervous system (Bernston et al., 1991). Studies

suggest that the vagus nerve is responsible for heart rate

variability within the respiratory frequency band, as pharma-

cological blockades of vagal synapses at the sino-atrial node of

the heart nearly abolish this coupling of heart rate and

respiration, whereas interruption of the cardiac sympathetic

inputs via beta-adrenergic blockade do not (Japundzic et al.,

1990; McCabe et al., 1985; Pagani et al., 1986), although there
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is some evidence that high levels of sympathetic activity may

attenuate RSA by inhibiting phasic vagal driving (see Berntson

et al., 1993). This association of respiratory-linked heart rate

variability, often termed respiratory sinus arrhythmia (RSA),

with vagal influence as its putative mechanism, has led to the

use of RSA as an approximation of vagal efferent activity to the

sino-atrial node, since no direct noninvasive assessment of

vagal cardiac efferent activity exists (e.g. Grossman and Taylor,

2007). The present manuscript will focus on how to obtain a

variety of metrics of respiratory-linked variability, presenting a

pragmatic overview and a description of tools available for use

by researchers wishing to assess cardiac vagal control.

1.2. From the electrocardiogram to metrics

1.2.1. The EKG

Assessing cardiac vagal control begins with a simple

digitized time series of the electrocardiogram (EKG), typically

recorded from bipolar recordings between pairs of limbs

according to Einthoven’s triangle (Einthoven et al., 1913),

although any placement that permits a reliable identification of

the R-spike in the EKG is acceptable. The EKG reflects voltage

changes associated with phases of the cardiac cycle, with peaks

and valleys in the waveform associated with the timing of atrial

and ventricular depolarization and repolarization. Accurate

identification of the QRS complex of the EKG, associated with

ventricular depolarization, provides an easy-to-identify and

reliable index of cardiac timing. Data should be digitized at a

rate of 500 Hz or faster (Bernston et al., 1991), and the distance

in milliseconds between each R-spike (the most prominent

feature of the EKG waveform) will form the basis of an

interbeat interval (IBI) series (see Fig. 1). This IBI series will

form the input data for most algorithms that compute metrics of

heart rate variability.

1.2.2. Artifacts in the detection of R–R intervals

Instead of the laborious task of detecting each IBI by hand,

beat detection algorithms can automate this process, but such

algorithms are seldom perfect, either skipping R-spikes

(indicated by an unusually large IBI value, e.g. 1800 ms) or
Fig. 1. Illustration of interbeat intervals (IBIs) and the electrocardiogram

(EKG) waveform.
detecting a spurious beat (indicated by an unusually small IBI

value, e.g. 150 ms). Even one artifact can result in an invalid

index of HRV or RSA, regardless of whether the metric was

derived from spectral analysis or time series analysis (Berntson

and Stowell, 1998). It is thus important that the IBI series

created from the beat detection program be hand-corrected for

artifacts, a process that is facilitated by one of the two software

tools (QRSTool) discussed in Appendix A.

1.3. The many metrics of HRV and RSA

1.3.1. Time domain metrics of variability

Time–domain metrics are plentiful and easily obtained (see

Stein and Kleiger, 1999, for an accessible review). Several

metrics summarize overall variability, but are not necessarily

specific to respiration-linked changes in heart rate. Such

metrics provide crude estimates of HRV and as such they are

more appropriate for clinical trials than for use in most

psychophysiological studies (Berntson et al., 1997). Other

metrics are better indices of respiratory linked changes, and

thus may serve as better indices of cardiac vagal control.

Measures of overall variability include the variance of the

IBI series, with greater beat-to-beat variability reflected in

greater variance. This metric is often log-transformed to make it

more suitable to parametric statistical analyses. Similarly, the

standard deviation of the interbeat intervals (SDNN; Murray

et al., 1975) has been recommended as a measure for overall

variability (Task Force of the European Society of Cardiology

and the North American Society of Pacing and Electrophysiol-

ogy, 1996). Because the variance and SDNN measures will

potentially be larger as recording length increases, as slow

changes in overall heart rate will influence these measures in

addition to the beat-to-beat changes (Ewing et al., 1981), the

Task Force (1996) recommends standardizing the recording

length to 5 min to aid comparisons across studies.

Several other time–domain measures may more closely

reflect respiratory-linked changes in heart rate, and thus provide

better indices of the parasympathetic nervous system’s

contribution to heart rate variability (respiratory sinus

arrhythmia). These include: the percentage of the absolute

differences between consecutive IBIs that are greater than

50 ms (pnn50; Ewing et al., 1984); the mean of the absolute

value of the difference between successive interbeat intervals

(MSD); the mean square successive difference (MSSD); the

square root of the mean of squared successive differences

between interbeat intervals (root mean square of successive

differences, or RMSSD; Von Neumann et al., 1941); the peak to

valley method (Grossman and Svebak, 1987; Grossman et al.,

1990; Katona and Jih, 1975); the Porges adaptive polynomial

filter method (also known as VHAT and VNA), a method that is

closely approximated using one of the software tools (CMetX)

described in Appendix A; Toichi’s cardiac vagal index (Toichi

et al., 1997).

MSD and MSSD provide nearly identical values (Ewing

et al., 1981). These metrics primarily index parasympathetic

influences to HRV, because slow changes to HR that are not due

to respiration produce little change from one successive beat to
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Fig. 2. A Lorenz plot of each IBI (x-axis) plotted against the subsequent IBI (y-

axis) for a single participant. Deviations in the direction transverse to the line

IBIn = IBIn+1reflect high beat-to-beat variability and putatively reflect predo-

minately parasympathetic influences.
the next, and thus do not appreciably influence the metrics

(Berntson et al., 2005; Porges and Bohrer, 1990). Friedman

et al. (2002) compared RSA (derived from impedance

pneumography, Ernst et al., 1999) and MSD during tasks that

would elicit distinct cardiac responses (e.g. hand grip for

sympathetic response). MSD and RSA slightly diverged during

a mixed sympathovagal task (i.e. playing a video game while

wearing a cold facial mask), such that MSD reflected more

sympathetic influence while RSA reflected parasympathetic

influences. In primarily parasympathetic and primarily sym-

pathetically mediated tasks, RSA and MSD responded similarly

(across tasks, except for mixed sympathovagal task, r = .89),

suggesting MSD captures much but not all of the respiratory-

linked variability in cardiac rate during most tasks.

The peak-to-valley or ‘‘peak-to-trough’’ method involves

averaging the differences between the shortest IBI during

inspiration and the longest IBI during exhalation across

respiration cycles, thus, requiring a separate measure of

respiration. Although this metric has been criticized for not

accounting for slow periodic and aperiodic variations in heart

period that are unrelated to respiration (Porges, 1986),

Grossman (1992) notes that such variations produce very

small effects on the peak to valley estimate of RSA (although

for more detail see Weber et al., 1992a,b). Moreover, the peak

to valley method correlates highly with both the Porges method

(see below) and spectral analysis (Grossman et al., 1990), with

within-subject correlations typically greater than .9, and

between-subject correlations of .93 during rest and .94 during

task conditions. Such convergence would be expected under

conditions in which heart rate levels are relatively stable, but

under periods of metabolic demands or recovery, slow trends

may confound the peak-valley measure but not measures based

on a limited frequency band (such as the Porges method or

spectral analysis).

The Porges method removes complex baseline low-

frequency nonrespiratory trends by using the patented

Porges–Bohrer algorithm with a moving polynomial that filters

out nonrespiratory frequencies and remove non-stationarities,

but with some amplification of signals close to the low

frequency cutoff due to a broad ripple in the frequency response

of this filtering method (Litvack et al., 1995) The method

converts the IBI series to a time series (see also Appendix A for

further description with CMetX), applies the filter, and then

computes the log-transformed variance of the remaining data

(in the respiration range .12–.40 Hz, after loss of data points for

the filter; Bohrer and Porges, 1982). The use of an average

respiration range for all individuals and populations (e.g.

anxious population; Kollai and Kollai, 1992) might result in an

attenuated estimate of RSA, as the breathing rate may occur

outside .12–.40 Hz (Grossman et al., 1990); however, the

Porges method allows specification of the respiration bands

based on the respiration rate.

Toichi et al. (1997) developed an alterative assessment of

cardiac vagal activity, derived from the logic of a Lorenz plot of

each IBI plotted against the subsequent IBI (Fig. 2). The length

of the transverse axis (T) to the line IBIn = IBIn+1reflects beat-

to-beat variability and large deviations along this axis
putatively reflect predominately parasympathetic influences

while the length of the longitudinal axis (L) reflects the overall

range of IBIs, resulting from both sympathetic and para-

sympathetic influences. Two indices are calculated from L and

T: cardiac vagal index (CVI) = log10(L � T); cardiac sympa-

thetic index (CSI) = L/T.

Toichi et al. (1997) examined changes in these metrics during

sympathetic and parasympathetic blockades during supine

resting, mental arithmetic, sitting, and standing. Although the

T metric was responsive to some extent to both sympathetic and

parasympathetic manipulations, the CVI was unaffected during

sympathetic blockade with propranolol and significantly

decreased under parasympathetic blockade with atropine,

especially during the postural change from standing to supine.

The CSI, by contrast, was significantly lower during sympathetic

blockade, except for in the supine resting condition.

1.3.2. Frequency–domain metrics of variability

A variety of frequency domain techniques are available for

examining the extent to which heart rate varies within specific

frequency ranges, such as those associated with typical

respiration. Fourier methods involve taking a time–domain

representation of the IBI series and converting it to a

frequency–domain representation, usually in the form of a

power spectrum, and then summarizing activity in the

frequency band of interest (e.g. .12–.40 Hz). An assumption

underlying the Fourier transform is that a signal has at least

weak stationarity (i.e. has a similar mean and variance across

time) and periodicity (i.e. it repeats, and does so at uniformly

spaced intervals of time). Although strictly speaking IBI series

signals are not stationary nor periodic, as heart rate can shift

over time and changes due to respiration and other sources do

not recur at uniform intervals, these violations are not likely to

be sufficient to invalidate the method (Friedman et al., 2002;

Houtveen and Molenaar, 2001). Wavelet methods, an alter-

native method for frequency decomposition that do not assume

stationarity, provide an other approach that produces results

that are highly similar to those provided with conventional

Fourier methods (Houtveen and Molenaar, 2001).

Autoregressive techniques are based on lagged correlations

and also produce an index of periodic fluctuations in a time
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1 Articles were included in this synopsis if they included healthy adult samples.
series, such as those due to respiration. Autoregressive and fast

Fourier transform methods are highly related (r = .96; Hayano

et al., 1991).

An extension of the Fourier-based frequency–domain

method involves comparing the IBI series with a measure of

respiration to assess the degree to which there is covariation

between the IBI series and respiration. These two signals may

be compared using cross-spectral analysis (e.g., Porges and

Bohrer, 1990) to derive an estimate of the coherence (ranging

from 0 to 1) between the signals at a given frequency, or the

weighted coherence (see Porges et al., 1980) for a range of

frequencies such as those that are within the respiratory range.

A variant of this method calculates the transfer magnitude (e.g.,

Freeman et al., 1995), which expresses the gain between heart

rate (in beats per minute) per liter of lung volume, with a large

gain indicating that relatively small changes in lung volume

result in sizable changes in heart rate.

Although this lengthy list of metrics is not exhaustive, it

covers the majority of those that have been used in the attempt

to estimate vagal influence on cardiac chronotropy. In the

present study, a subset of these measures are examined that are

widely used and easy to obtain using only an EKG signal, and

that can be derived using the freely-available software tools

described in Appendix A.

1.4. Comparisons of measures

A few studies have compared the many metrics of cardiac

chronotropy, typically comparing a subset of the measures to

each other (Fahrenberg and Foerster, 1991; Friedman et al.,

2002; Grossman et al., 1990; Hayano et al., 1991; Kleiger et al.,

1991). In an examination of time and frequency domain

measures derived from 24 h ambulatory Holter monitors,

Kleiger et al. (1991) reported high correlations between SDNN,

pnn50, RMSSD, and spectral analysis, with moderate correla-

tions between SDNN and the other metrics (.68–.78), and

strong correlations amongst pnn50, RMSSD, and spectral

analysis (r’s = .92–.98). Similarly high correlations (mean

r = .85) between RMSSD and spectral high frequency power

were found by Berntson et al. (2005).

Despite suggestions that the peak-valley estimation is

vulnerable to artifacts associated with low frequencies (Byrne

and Porges, 1993; Porges, 1985; Porges and Bohrer, 1990) and

concerns that spectral analysis and the Porges–Bohrer method

do not individually tailor the respiration range and instead use a

mean or modal range of respiration (typically somewhere in the

range of 6–30 breaths per minute; e.g. Grossman and Wientjes,

1986), a comparison suggests near equivalency of the peak-

valley estimation, the Porges method, and spectral analysis

during a 5 min period (Grossman et al., 1990). Moderate

relations between MSD and the peak-valley method and

spectral analysis also exist (r’s .58–.9; Fahrenberg and Foerster,

1991; Hayano et al., 1991).

Despite the comparison of methods, no single measure has

been hailed as the ‘‘gold standard.’’ The Society for

Psychophysiological Research’s Task Force committee report

concluded ‘‘A number of approaches are currently available for
analyzing periodic components of heart rate variability . . . and

direct comparisons have revealed generally comparable results.

Each of these approaches has advantages and disadvantages,

and no general consensus has emerged on a single optimal

analytic method’’ (Berntson et al., 1997, p. 641). There may,

however, be specific research questions and research designs

when one measure is preferable over the other (see pp. 151–

154; Grossman, 1992), and some measures are more closely

tied to respiratory-linked variability and may thus be preferred

over global measures (HRV, SDNN) of variability.

1.5. Methodological concerns

1.5.1. Participant characteristics and behaviors

There are numerous issues that should be considered when

deriving heart rate metrics as summarized by the Committee

Report of Berntson et al. (1997). Beyond the issues that are

summarized in the committee report, it is worth noting that

there are a number of study participant behaviors and

demographics that can influence indices of heart rate variability

and, specifically, respiratory-linked variability. These factors

may be considered when designing a study or assessed in the

context of the study, and include: use of caffeine or alcohol,

exercise, smoking, age, gender, and obesity. Table 1 provides a

tabular summary of the impact of these various factors.1

1.5.2. The thorny issue of respiration

1.5.2.1. Might RSA be an imperfect index of vagal control?.

A concern that has inspired considerable debate is the question

of controlling for respiration. The principal issue is whether

RSA is primarily a reflection of cardiac vagal control or whether

RSA can under certain circumstances also reflect changes in

respiration that are independent of central vagal effects.

Investigators want to determine whether there are legitimate

changes in vagal control, and not merely the influence of

changes in respiration on the imperfect measure, RSA. This

problem arises when respiration rates differ between groups, or

between conditions.

Grossman et al. (1991) demonstrated that when there is large

variability in respiration rates within individuals, rapid

breathing will reduce RSA and slow breathing will increase

RSA, independent of changes in tonic vagal modulation of

heart rate, in a study designed to eliminate sympathetic

contributions by administering 10 mg propranolol to block

sympathetic influences. Houtveen et al. (2002) concur that RSA

does not reflect solely tonic vagal modulation of heart rate

during activities that affect the central respiratory drive (e.g.

exercise), but they conclude, however, that during activities

when respiration is not expected to greatly vary (i.e. during

resting conditions and most clinical mental stress tasks), RSA

uncorrected for respiration accurately reflects vagal modulation

of heart rate.

Some studies pace participants’ breathing at a fixed rate or

rates (e.g. Grossman et al., 1991) in order to avoid the
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Table 1

Individual difference variables and participant characteristics that can impact measures of cardiac vagal control

Variable Specific

comparisons

Description of sample Study design Cardiac measures Effect on HRV

and RSA

Effect size

(Cohen’s d)

Citation

Smoking

Chronic smoking Resting RSA of

non-smokers vs.

moderate smokers

(1–24 cigarettes

per day) who are

less than 30 years

of age

28 males: aged 19–30 years;

15 non-smokers and 13

moderate smokers; refrained

from smoking or drinking

caffeine or alcohol 8 h

before the study and

consumed a light breakfast

5 min resting recording

in the supine position

RSA calculated by power

spectral density of RR

interval variability

No difference in

resting levels of

RSA

Not significant Hayano et

al. (1990)

Resting RSA of

non-smokers vs.

heavy smokers

(>25 cigarettes

per day) who are

less than 31 years

of age

26 males: aged 19–30

years; 15 non-smokers

and 11 heavy smokers;

refrained from smoking

or drinking caffeine or

alcohol 8 h before the

study and consumed a

light breakfast

5 min resting recording

in the supine position

RSA calculated by power

spectral density of RR

interval variability

Reduced levels

of RSA (power

spectral density)

in heavy smokers

>31 years of age

DRSA = .88 Hayano et

al. (1990)

Resting RSA of

non-smokers vs.

moderate and

heavy smokers

greater than 31

years of age

26 males: aged 30–52

years; 10 non-smokers,

18 moderate smokers, and

14 heavy smokers;

refrained from smoking

or drinking caffeine or

alcohol 8 h before the

study and consumed a

light breakfast

5 min resting recording

in the supine position

RSA calculated by power

spectral density of RR

interval variability

No differences

between groups

Not significant Hayano et

al. (1990)

Acute effects of

smoking

Acute effects of

smoking in

regular smokers

Nine males: aged 24–30

years who were regular

cigarette smokers (mean

27 � 8 cigarettes per day)

refrained from smoking

or drinking caffeine or

alcohol 8 h before the

study and consumed a

light breakfast

5-min pre-smoking

recording and post-

smoking resting

recording 3, 10, 17,

and 24 min after start

of smoking in the supine

position. Participants

smoke 4 cm of 1

cigarette containing

1.0 mg of nicotine

during 2 min in the

supine position

HRV calculated by standard

deviation o f the R–R

interval; RSA calculated by

power spectral density of

RR interval variability

No changes in

HRV. Reduced

RSA at 3 min

post-smoking and

returned to control

level by 10 min

dHRV = not

significant;

dRSA = 1.01

Hayano et

al. (1990)

Change during

smoking in

regular smokers

(mean = 25.75 �
11.9 cigarettes)

16 participants (8 female)

aged 18–75 who smoked

regularly (mean 25.75 �
11.9); refrained from

smoking and from drinking

alcoholic or caffeinated

beverages for 12 h before

study

10-min baseline and

the last 10 min of each

30 min cigarette

smoking period

resting recording

in a seated position.

Ten fixed doses

of 1.0 mg of nicotine

were administered

in a standardized manner

for three separate

cigarettes spaced 30 min

apart

Autoregressive spectral

analysis from the IBI series

in the full spectrum for

HRV and in the respiratory

frequency range for RSA

Reduced HRV

and RSA

dHRV = 1.86; dRSA

= .52 (effect sizes

reported for only

the effects of the

first cigarette as

cardiac measures

were not

significantly

different for

number of

cigarettes)

Nabors-

Oberg

et al.

(2002)
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8Table 1 (Continued )

Variable Specific

comparisons

Description of sample Study design Cardiac measures Effect on HRV

and RSA

Effect size

(Cohen’s d)

Citation

Exercise

Pre- to post-training

changes in resting

recordings of heart

rate after exercise

program

Pre- to post-

training changes

in HRV and

RSA in those

in an exercise

training program

for 16 weeks

vs. those not

exercising

Nineteen healthy males ages

45–68: 11 in exercise group

and 8 in control group.

Exercise group underwent

a prolonged program of

physical training (30 � 1 week,

range 25–36). During first 14

weeks of training, participants

walked/jogged 3 days/week

for 33 min/day. Level of

exercise was progressively

increased so that during final

16 weeks of training

participants walked/jogged

3.5 days for 43 min per day

5 min in supine position

while breathing at a rate

of 10 breaths per minute

SDNN for HRV and peak

to trough times series

analysis for RSA

HRV increased;

no change in

RSA

dHRV = .76

(estimated

from graphs)

Seals and

Chase

(1989)

Pre- to post-

comparison

of RSA

after exercise

training three

times

per

week for 3

months

17 healthy males: 10

‘‘young group’’ ages 19–29;

‘‘middle-aged group’’ ages

50–59. Refrained from

smoking, caffeine, and

alcohol on the day

before EKG

1 h resting condition in

supine position for 60 min

Standard deviation of the

R–R interval for HRV and

spectral analysis in the

respiratory frequency for

RSA

No differences

between

exercisers and

controls and no

differences

between pre- to

post-resting HRV or

RSA in exercisers

Not significant Catai et

al. (2002)

Comparison of

regular

exercisers to

non-exercisers

Between

group

differences

in RSA

30 healthy participants

(4 women) ages 22–44.

Participants who did not

exercise regularly and

participants who exercised

less than 60 min, three times

a week, for more than 6 months

and intermediately were

those who fell in between

the two groups; participants

were nonsmokers and refrained

from caffeine and alcohol

and refrained from moderate,

heavy, or sustained exercise on

the morning prior to the EKG

24 h Holter and participants

avoided moderate, heavy,

or sustained exercise

Spectral analysis in the

respiratory frequency range;

time domain measures of

root mean square of

successive differences; and

the proportion of successive

differences greater than 50

ms for measures of RSA

Greater levels of

resting HRV and

RSA in exercisers

compared to

non-exercisers

Not available Goldsmith

et al. (1997)

Between

group

differences

in RSA

12 college aged males

(6 aerobically trained).

Aerobically trained participants

were members of the men’s cross-

country team for at least 1 year

and had a minimum of 3 years

of competitive experience

in cross-country events

3 min resting condition Porges method No difference in

RSA in aerobically

trained men

Not significant Hatfield et

al. (1998)
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Chronic effects of

exercise

Resting HRV

and RSA

levels between

senior sedentary

controls,

moderate

exercisers,

and high

exercisers

80 women ages 60–70 years old;

14 low activity, 13 moderate

activity (from adult gymnastics

group for >4 years); 14 in

high-activity from cycling

tour club for >4 years

10 min resting with and

without paced breathing;

participants refrained from

exercise, alcohol, and caffeine

within last 24 h

For HRV, standard deviation

of the RR series; for RSA,

square root of the mean

squared differences and

spectral analysis in the

respiratory frequency

HRV and RSA were

higher in the high

activity group in

comparison to the low

activity group

dSDNN = .49;

drMMSD = 3.75;

dRSA = 2.86

Reland et

al. (1994)

Resting HRV

and RSA levels

between senior

sedentary

controls

and senior

competitive

athletes

(vigorous

exercise

for at least

45 min, four

times a day)

29 healthy seniors (>60

years old): 14 sedentary

persons and 15 athletes

(45 min, 4 times per week),

who refrained from alcohol

and caffeine for 12 h before

and during ambulatory

recording, and 24–36 h

after last bout of exercise

24 h Holter and participants

refrained from exercise

during Holter

SDNN for HRV and rMMSD

and HRV in the respiratory

frequency range for RSA

derived from time series

analysis of the IBI series

Senior competitive

athletes had greater

HRV and RSA in

comparison to

sedentary controls

dSDNN = 1.05;

drMMSD = 1.19;

dRSA = 1.16

Yataco et

al. (1997)

Age and gender

Age HRV and RSA

decrease with age

See De

Meersman

and Stein

(2007) for

summary

Gender Mixed Findings See De

Meersman

and Stein

(2007)

for summary

Caffeine

Acute effects of

caffeine

Resting levels

of RSA from

pre- to post-

consumption

of caffeine

10 healthy participants

(1 female) aged 21–25 years

old. Participants abstained

from food, drink, and

exercise for the previous 3 h

Breathed 1 breath every

4 s during 5 min resting baseline

and 20 min after the beverage

was consumed. Each participant

had the caffeinated beverage one

day and the uncaffeinated

beverage the next day

Spectral analysis of the

IBI series in the respiratory

frequency for a measure

of RSA

RSA increased

and reached the

maximum about

20–30 min after

consumption of

caffeine compared

to placebo

Not available Hibino et

al. (1997)

Resting levels

of RSA from

pre- to post-

consumption

of caffeine

20 healthy participants

who regularly consumed

350–700 ml of coffee per

day (approximately 180–360 mg

caffeine). Participants fasted

and abstained from caffeine

from 10 p.m. the night before

each examination

5 min baseline recording pre-

and 1 h post-consumption of

either 300 mg caffeine pill or

matching placebo capsule

on two consecutive days

Spectral analysis in the

respiratory frequency for

a measure of RSA

No change in

RSA from

pre- to post-

consumption

of caffeine

Not significant Waring et

al. (2003)
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Variable Specific

comparisons

Description of sample Study design Cardiac measures Effect on HRV

and R A

Effect size

(Cohen’s d)

Citation

Acute effects of

caffeine in

non-habitual

caffeine users

Compared

resting levels

of RSA between

placebo, and

100 and 200

mg of caffeine

10 participants (4 women)

ages 23–32 randomized to

receive 100 or 200 mg of

caffeine dissolved in honey or a

placebo in a crossover design over

3 days. Refrained from caffeine

for 4 days

At baseline, 60 and 90 min

after ingestion

Time domain for HRV was

standard deviation of IBIs

and the root mean-squared

difference in successive IBI

intervals, the percentage of

successive RR intervals >

50 ms, and the respiratory

frequency all served as

measures for RSA

RSA d HRV

decre ed after

90 af r caffeine

consu ption

100 mg: dSDNN =

3.41; drMMSD =

.84; dpnn50 = n.s.;

dRSA = 1.34; 200

mg: dSDNN = 3.76;

drMMSD = .89;

dpnn50 = 1.06;

dRSA = 1.15

Sondermeijer

et al. (2002)

Long-term effects

of caffeine

Compared resting

levels of HRV

and RSA after

2 weeks of no

caffeine in

comparison to 2

weeks of caffeine

10 healthy (5 female) mean age

41.4(�10.8). All maintained a

low-caffeine diet (<50 mg/day)

48 h Holter pre- and post-2

weeks. Randomized cross-over

design for 2 weeks ingested

2 250 mg (comparable to two

to three cups of drip coffee)

caffeine per day or matched

placebo

Time domain measures of

counts of RR intervals >

50 ms (sNN50) and spectral

analysis in the respiratory

frequency for RSA

Pre- post-

chang s after

2 we s of

daily ffeine

incre ed HRV

but n changes

in RS

dHRV = .80 dRSA =

not significant

Richardson

et al. (2004)

Alcohol

Chronic effects

of alcohol

Pre- to post-

changes in resting

levels of RSA after 1 week

of daily consumption

of 24 g of vodka in

comparison

to 1 week of no alcohol

21 healthy participants

(7 female) aged 21–41 years

30 min supine rest followed

by 5 min EKG with controlled

breathing

Spectral analysis in

respiratory frequency

Incre ed RSA

after week of

daily cohol

comp ed to

after week

of no lcohol

dRSA = .93 Flanagan et

al. (2002)

Acute effects of

alcohol

Pre- to post-

changes in HRV

and RSA with

consumption of

alcohol

18 healthy males (mean age

28.5 � 4.3 years old) who were

infrequent drinkers consumed .3 g

of alcohol/kg of body weight

10 min resting recording before

and after (at 15, 30, 45, and 60

min post) at 9 a.m.; participants

were told to fast overnight

RSA measured by spectral

analysis in the respiration

frequency band

Decre se in RSA

from to 60 min

after nsumption

of alc hol

dRSA15 = 1.83;

dRSA30 = 1.90;

dRSA15 = 1.44;

dRSA15 = 1.77

Gonzalez

Gonzalez et

al. (1992)

Within-subject

comparison of

baseline levels

of RSA after

alcohol or

fruit juice

consumption

12 healthy males (mean age

23.8 � 1.5 years old) whose

weekly alcohol consumption

averaged 77 g (range 20–150 g);

refrained from alcohol for 48 h

and fasted and refrained from

coffee and cigarettes for 4 h

Pre- to post-changes after

drinking 1 g/kg of body

weight in juice or in alcohol

one week apart. Thirty min

resting heart rate before and

after ingestion every hour

for 3 h during controlled

breathing

RSA measured by root

mean square of R–R

intervals and spectral

analysis

RSA creased

after cohol

consu ption

up to h post

consu ption

Not available Koskinen et

al. (1994)

Obesity

Effects of obesity Comparison of

HRV and RSA

in normal,

overweight, and

obese participants

653 healthy participants

(361 women) mean ages

of 40 � 12 years

24 h Holter HRV measured by standard

deviation of RR intervals;

RSA by root mean square

of successive RR interval

differences, percentage of

successive normal sinus

RR intervals >50 ms, and

spectral analysis in the high

frequency range

No d erences Not significant Antelmi et

al. (2004)

Comparison of

RSA and body

mass index

282 healthy males ages

21–59 years old who refrained

from consuming food or

beverages 2 h prior

3 min resting heart rate RSA measured by

autoregressive spectral

analysis in the respiratory

frequency band

High levels of

RSA ith lower

body ass index

Not available Kageyama

et al. (1997)
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1
Comparison of

HRV before

and after

propranolol

56 males aged 25–36 with

stable weight within the last

4 months with body mass index

ranging from 2 to 46.3 (mean

24 � 1.3). Participants consumed

a weight-maintaining liquid diet

for 4 days preceding heart rate

monitoring. Participants refrained

from tobacco and caffeine on

the day of the recording

6 min heart rate during

fixed breathing rate (5 breaths

per minute) before and after

propranolol

Standard deviation of R–R

intervals for HRV and

standard deviation of R–R

intervals after propranolol

during paced breathing for

RSA

No relationship

between body

mass index and

HRV; lower RSA

with higher body

mass index

Not available Peterson et

al. (1998)

Comparison of

RSA in obese

and lean

participants

84 (39 women) aged 39–60:

46 obese and 26 lean matched

controls

24 h Holter HRV measured by standard

deviation of all normal RR

intervals; RSA measured by

spectral analysis in the

respiratory frequency band

during 24 h, daytime and

evening

Less HRV and

RSA in obese

patients

dHRV = .86;

dRSA_T = .60

Karason et

al. (1999)

Between group

comparison of

HRV and RSA

in obese and

lean women

20 obese women aged

years old, weight between

kg and 18 women aged 22–39

years old of normal weight

15 min heart rate recording

in the supine position

Standard deviation of the

R–R interval for HRV and

spectral analysis in the

respiratory frequency range for

RSA

HRV and RSA

less in obese

women

dHRV = .73;

dRSA = .66

Zahorska-

Markiewicz

et al. (1993)

Between group

comparison of

HRV and RSA

in obese and

lean participants

120 participants: 42 obese

patients (24 females) ages

15–55 whose body mass index

was greater than 30 and 78

lean healthy participants (30

females) aged 15–69.

Participants refrained

from caffeine on the day

of the study

4-min resting heart rate

while breathing deeply at

a rate of 6 breaths per

minute

The mean of the differences

between the maximum and

minimum heart rate during

three successive breathing

cycles measured HRV and

cross-correlation function

analyses (correlates spectral

analysis of the interbeat

interval series within the

respiratory frequency range

with the respiratory signal

indexed RSA)

HRV and RSA less

in obese participants

dHRV = 1.33;

dRSA = 1.28

Rossi et al. (1989)

Between group

comparison of

HRV and RSA

in three groups

of varying body

mass indices

23 patients (16 females) ages

in three groups: 17 in

27–32 kg/m2 group,

13 in 33–39 kg/m2 group,

and 12 in above 40 kg/m2

group

5 min resting heart rate Spectral analysis in the

respiratory frequency

range for RSA

No differences

in resting RSA

between groups

and no relationship

between RSA and

body mass index

dRSA = not

significant

Laederach-

Hofmann

et al. (2000)

Circadian rhythm

Circadian rhythm HRV and RSA

decrease during

the daytime and

increases during

the nighttime

See Guo

and Stein

(2002)

Effect sizes are provided when possible.
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possibility that changes in respiration, unrelated to central

vagal efferent activity, can produce changes in the metric used

to assess vagal control, RSA. An unresolved issue, however, is

whether paced intentional breathing alters the very system the

investigator wishes to assess. Under spontaneous conditions,

breathing is a probe that allows investigators to observe the

direct effects of the vagal system on cardiac rate, assessing the

degree to which rate is responsive to each breath. Changing the

probe itself, by pacing breathing for example, could render the

assessment invalid for a variety of reasons, among them the

fact that one would no longer be observing the spontaneous

activity of the system, but the activity under artificial

conditions. Whether the behavior of the system under paced

conditions is an adequate model for its behavior under

spontaneous conditions remains an open question. Moreover,

evidence that manipulating the depth and frequency of

breathing can impact subjective emotion (Philippot et al.,

2003) suggests that pacing breathing may additionally affect

behaviors of central interest to researchers utilizing measures

of vagal control. The debate over whether to control for

respiration is discussed in depth by several authors in this

volume (Denver et al., 2007; Grossman and Taylor, 2007;

Porges, 2007) and elsewhere (Berntson et al., 1997; Grossman

et al., 1991).

1.5.2.2. Statistical ‘‘control’’ for respiration. In addition to

attempting to experimentally control respiration by pacing

breathing, for example, authors have attempted to statistically

control for respiration frequency through the use of covariate

analysis (e.g. Hughes and Stoney, 2000) or residualizing data by

first accounting for variance that overlaps with respiration

frequency. The use of an analysis of covariance (ANCOVA)

procedure has both valid and invalid uses, as detailed below, but

adjusting estimates of RSA using respiratory frequency as a

covariate will not ‘‘solve’’ the problem when experimental

conditions or groups of participants differ in terms of

respiratory frequency. Such an analysis can address whether

variance between groups of participants or between conditions

in respiratory frequency may account for any differences in

RSA observed between those groups of participants or between

conditions. But this analysis does not in any way ‘‘fix’’ the

underlying fact that groups or conditions differ in terms of

respiration, nor does it allow one to proceed with covariate

adjusted RSA data as if one had ‘‘corrected for’’ or

‘‘statistically controlled for’’ the impact of respiration.

This issue has received statistical and conceptual discussions

(e.g. Chapman and Chapman, 1973; Miller and Chapman,

2001; Siddle and Turpin, 1980, among others), but the

fundamental issue is that covariance analysis is designed to

remove variance due to a factor that is statistically independent

of (i.e. uncorrelated with) the effect of interest, as in the case of

removing variance associated with an individual difference

such as body mass index when participants are randomly

assigned to conditions. When a dependent variable (RSA) and a

covariate (respiration frequency) are correlated, however,

removing the effect of the covariate on the dependent variable

can remove relevant variance in RSA that is due to the group
difference or experimental manipulation, thus, misleading a

researcher to conclude that no meaningful differences exist

between subjects or conditions in terms of RSA. Vexingly, in

other cases, such an ANCOVA can in fact create spurious group

or condition effects (e.g. see Wainer’s, 1991 discussion of

Lord’s Paradox). In short, this use of covariance may remove

too much of the effect of interest, or conversely create spurious

effects (Elashoff, 1969; Miller and Chapman, 2001).

Among the recommendations of the Society for Psycho-

physiological Research Committee Report (Berntson et al.,

1997) is ‘‘to use respiratory frequency and possibly depth as

covariates in statistical analysis or to remove possible

contributions by regression prior to analysis’’ (p. 639).

Although this at first glance appears to be a recommendation

to use ANCOVA in the problematic manner outlined above,

they note one paragraph later that ‘‘these correction procedur-

es . . . may remove actual experimental effects that correlate

with respiratory changes’’ (p. 639), thus reinforcing the

message that ANCOVA does not solve the underlying

confounding of respiratory parameters and the group or

condition differences. The Committee’s recommendation to

use ANCOVA makes sense when the variance to be removed is

understood to be noise or error variance, rather than variance

systematically associated with the independent variable.

Despite such problematic use of ANCOVA with respiration

and RSA, there remain some valid uses that can rule out some

important alternative hypotheses. Instead of asking whether

effects of group or condition on RSA remain after ‘‘account-

ing for’’ or ‘‘controlling for’’ variance due to respiration, one

can ask the question of whether respiration can account for

these effects of interest. If an investigator finds significant

group or condition effects on RSA in a simple ANOVA, and

subsequent results using respiration as a covariate in an

ANCOVA leave the effects of interest intact, then it is safe to

conclude that respiration cannot account for the effects of

interest, and the investigator can then interpret the RSA effects

due to group or condition. If, however, including the covariate

changes the statistical outcome, one is left not knowing

whether the effects of group or condition on vagal control are

legitimate, or an artifact of respiration differences between

group or condition.

1.5.2.3. Simple recommendations regarding respiration. The

Society for Psychophysiological Research’s Task Force

committee report recommends the consideration of respiration

when interpreting RSA as a measure of cardiac vagal control,

specifically to ensure that the frequency band used to define

RSA (e.g. .12–.40 Hz) actually encompasses the respiratory

frequency of participants included in the analysis (Berntson

et al., 1997). Common lower cutoffs for the respiratory band are

.12 Hz (one breath every 8.3 s) and .15 Hz (one breath every

6.7 s), but these cutoffs will yield an inaccurate estimate of

RSA for participants who breath more slowly than the lower

cutoff (and a similar problem would exist in the less likely case

that participants breath more rapidly than the upper cutoff).

Moreover, the impact of breathing at frequencies near the cutoff

will be attenuated to some extent due to the transition band on
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most filters (see Fig. A.2 in Appendix A for examples of such

transition bands).

Assuming that participants are breathing in the range defined

to be captured by a given metric of RSA, there remain several

desiderata for experimental design and analysis with respect to

respiration:
(1) P
lan the experiment to increase the likelihood that

respiration rates will not differ between conditions (e.g.

keep activity levels similar across conditions).
(2) M
onitor to ensure respiratory rate does not differ between

conditions and occurs in a range that will be captured by the

metric of RSA. This can be done by monitoring respiration,

or also by looking at the peak in the spectral representation

of the time-sampled IBI series.
(3) I
f rates differ, use covariate analysis not to adjust means, but

to assess whether effects from a standard ANOVA survive

after accounting for variance due to respiration. If they do,

then respiration rate effects did not account for the effects of

interest and interpretations based on RSA can proceed.
(4) I
f after covariate analysis the effects of interest disappear,

then one is left with an interpretive enigma with respect to

whether the observed differences in the measure of RSA

may accurately reflect differences in vagal control per se.
1.6. The present study

Empirical data are presented to illustrate the discriminant

and convergent validity of easy to derive time domain measures

of heart rate variability that can be calculated using the suite of

programs described in Appendix A. These are metrics that do

not require respiration for their calculation, but are based on

normative ranges of respiratory frequency. As these results

were obtained under relatively inactive laboratory conditions,

they may or may not apply to vastly different settings where

respiration may vary substantially.

2. Method

2.1. Participants

Participants were undergraduate students recruited by telephone for an

experiment on ‘‘personality characteristics,’’ for which they would receive

credits toward a course in introductory psychology. These participants were also

included in Movius and Allen (2005), but only the single RSA metric and its

relationship to personality measures was reported in that paper. Participants

who were currently taking cardiovascular medications or those with a history of

cardiac disease were ruled ineligible for the study. A total of 116 of the

participants contacted by phone agreed to participate in the study. Due to

electrode failure (16), resting RSA more than three standard deviations below

the mean (2), and too many abnormal beats (2), data from a total of 96

participants (51 females) were available.

2.2. Procedures

After providing informed consent, three Ag/AgCl electrodes were attached

to each participant in a Lead-II formation (Einthoven et al., 1913) plus a right

forearm ground, with impedances reduced to less than 20 kV on all electrodes.

EKG signals were amplified 1000 times with a bandpass of .05–100 Hz, then

digitized at 500 Hz.
2.2.1. Tasks for recording

Participants were seated in a sound-dampened chamber and briefly oriented

to their surroundings. Participants sat quietly for five minutes to obtain baseline

values. For a measure of heart rate reactivity, participants were then asked to

perform serial paced mental arithmetic by counting backward in varying

intervals, starting with a four-digit number for five 1 min periods. Following

the paced arithmetic stressor task, participants sat quietly for another 5 min

period.

2.3. Data reduction

2.3.1. EKG signal reduction

Raw digitized EKG signals were analyzed off-line. IBI series were hand

corrected for artifacts and then processed by CMetX (see Appendix A) for

measures of heart rate and heart rate variability. CMetX converted the IBI series

to a time-series sampled at 10 Hz, filtered the series using a 241-point optimal

finite impulse response digital filter designed using FWTGEN V3.8 (Cook and

Miller, 1992) with half-amplitude frequencies of .12 and .40 Hz, and then took

the natural log of the variance of the filtered waveform to be as the estimate of

RSA. CMetX also derived several other measures of heart rate variability: the

proportion of consecutive interbeat intervals differing by more than 50 ms

(pnn50); the mean of the absolute value of the difference between consecutive

IBIs (MSD); the cardiac vagal index (CVI; Toichi et al., 1997); the standard

deviation of the interbeat intervals (SDNN); the root mean square of successive

differences between interbeat intervals (RMSSD); and natural-log-transformed

variance of the unfiltered IBI times series, across the entire frequency range

(HRV). Finally, CMetX calculated the cardiac sympathetic index (CSI; Toichi

et al., 1997), average heart rate, and average heart period. All metrics were

calculated for resting baseline and during the stressor task.

3. Results

3.1. Transfer functions of various classes of metric

Two metrics of variability (HRV: natural log of the variance

of the IBI series; SDNN: standard deviation of IBI series) are

based on the raw IBI series and summarize cardiac variability

across all frequency ranges, and thus do not reflect solely vagal

contributions to cardiac chronotropy. Other metrics transform

the IBI series via various ‘‘filters,’’ and thus may attenuate non-

respiratory contributions to heart rate variability. The mean

successive difference (MSD) metric is based on successive

differences, which have been noted to attenuate lower

frequencies, and the root mean square of successive differences

between IBIs (RMSSD) might be expected to have a similar

effect. The pnn50 is essentially a course successive difference

filter, dichotomizing the successive differences as zero or one.

And the estimate of RSA (natural log of .12–.40 Hz band-

limited time-sampled IBI series) will specifically eliminate

those frequencies outside of the typical respiration band.

To derive the transfer functions of these various transforma-

tions, for each IBI series (across all participants at baseline and

task conditions) a successive-difference (SD) series was created,

as well as a dichotomized SD series (to correspond to the pnn50

metric) with values greater than 50 ms receiving a value of one,

and those�50 receiving a value of 0. Time series with sampling

rates of 10 Hz were created for each of these series using cubic-

spline interpolation. To compare the frequency response of these

series with the method used to estimate RSA (CMetX), an

additional series was created by applying a .12–.40 Hz filter to a

10 Hz sampled time series interpolation of the original IBI series.
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Fig. 3. Gain functions for various ‘‘filters’’ including mean successive difference (SD), proportion of consecutive interbeat interval (IBI) differences differing by

more than 50 ms (pnn50), and .12–.40 Hz bandpass filter (CMetX). Inset shows average amplitude spectrum of the non-transformed time-sampled IBI series across all

participants and tasks. Note that the gain functions for the SD and .12–.40 Hz filters are based on a comparison of spectra using values in ms as input, and thus provide

transfer functions that will produce meaningful gain estimates compared to the ms units for the raw IBI series. The pnn50 filter, by contrast, assigns dichotomous

values of zero or one, and thus is not calibrated in milliseconds as the other metrics. The pnn50 gain function has thus been multiplied by 100 for display purposes,

leaving the shape of the transfer function unchanged, and displaying the relative weighting of various frequencies with this transformation.
Power spectral density estimates were obtained for each series by

average FFT (successive windows of length 5.12 s, overlapping

by 3.84 s, with a 50% Hamming window). These spectral

densities were used to calculate the gain function for each derived

series, taken as the ratio between amplitudes of the derived and

original IBI at each frequency. Average gain functions were

obtained for each derived series (SD, dichotomized SD [pnn50]

and .12–.40 Hz filter) as the grand mean of the respective transfer

functions across all original IBI series (all participants and both

resting and stress task).

The gain functions for each metric, representing the average

across all participants and task conditions, are presented in

Fig. 3, with the inset of Fig. 3 showing the amplitude spectrum

from the raw IBI series. As expected, the empirical transfer

function for the .12–.40 Hz filtered series closely approximates

the transfer function of that filter, and substantially attenuates

frequencies outside of that bandwidth. The SD, and pnn50

transfer functions, by contrast, are characterized by: (1)

broader transition bands at the low frequency end, thus,

allowing some non-respiratory linked low-frequency variance

to be included; (2) uneven transfer functions, especially for

pnn50, with large changes in gain from one frequency to the

next; (3) accentuation of higher frequencies, such that

frequencies beyond the normal breathing range are most

heavily weighted in the calculation of the metric. This

empirical derivation is in general agreement with the transfer

ratio modeled by Berntson et al. (2005), who estimated a

similar shaped transfer function, based only on successive

differences in simulated data based on sinusoidal respiration

functions at individual frequencies.

3.2. Convergent validity

As shown in Table 2, measures of heart rate and heart rate

variability were highly correlated with one another during
both rest (median magnitude of Pearson r = .75) and during

paced arithmetic stressor (median magnitude of r = .73).

Metrics putatively measuring parasympathetic nervous

system activity were also highly intercorrelated during rest

(median r = .89) and during paced arithmetic stressor (median

r = .87).

3.3. Discriminant validity

Although many measures of heart rate and heart rate

variability were moderately to highly correlated both during

rest and stressor, the putative sympathetic metric, Toichi’s CSI,

was significantly negatively correlated to all other measures of

heart rate variability both at rest and under stress.

3.4. Exploratory factor analysis

To examine the degree to which the measures were

indexing similar constructs, exploratory factor analysis

using principal component extraction and varimax rotation

was utilized, extracting two factors. Measures of variability

were entered into the analysis (HRV, SDNN, RMSSD, CSI,

MSD, pnn50, RSA, and CVI), with a separate factor

analysis conducted at rest and during stressor. Two factors

accounted for 94% and 95% of the variance during rest

and stressor, respectively. As shown in Table 3, Factor 1 had

high loadings for every metric except CSI, whereas Factor 2

had a very high loading for CSI, and smaller and inverse

loadings for most but not all other metrics. The factor

loadings were descriptively quite similar at rest and during

stressor.

These results suggested that across participants and across

tasks, the inter-relationships of the various metrics were highly

stable, and that measures putatively reflecting total variability

and parasympathetically mediated variability loaded on a single



J.J.B. Allen et al. / Biological Psychology 74 (2007) 243–262 255

Table 2

Intercorrelations between metrics at rest and during paced arithmetic

IBI HR HRV SDNN RMSSD CSI MSD pnn50 RSA

Rest

HR �.98

HRV .62 �.62

SDNN .59 �.56 .95

RMSSD .65 �.61 .84 .93

CSI �.58 .59 �.33 �.39 �.63

MSD .65 �.61 .80 .88 .98 �.65

pnn50 .73 �.72 .75 .77 .88 �.75 .91

RSA .62 �.61 .90 .90 .91 �.60 .89 .87

CVI .72 �.72 .96 .94 .92 �.58 .88 .88 .95

Paced arithmetic

HR �.97

HRV .49 �.45

SDNN .53 �.47 .97

RMSSD .74 �.67 .74 .83

CSI �.67 .75 �.31 �.31 �.61

MSD .78 �.71 .71 .80 .99 �.61

pnn50 .79 �.72 .71 .77 .97 �.61 .97

RSA .68 �.68 .84 .83 .88 �.71 .87 .87

CVI .69 �.68 .92 .91 .89 �.63 .87 .87 .97

Change from rest to paced arithmetic

HR �.84

HRV .14 �.05

SDNN .11 �.03 .92

RMSSD .45 �.26 .62 .75

CSI �.48 .72 .08 .11 �.15

MSD .45 �.26 .53 .66 .96 �.14

pnn50 .39 �.14 .40 .47 .78 �.11 .84

RSA .30 �.35 .76 .71 .64 �.45 .57 .45

CVI .35 �.30 .92 .87 .75 �.27 .65 .54 .89

Note: N = 96; correlations greater in magnitude than .199 are significant at the P < .05 level. Each panel has measures of rate (IBI = mean interbeat interval;

HR = mean heart rate), measures of total variability (HRV = natural log of variance of IBI time series; SDNN = standard deviation of IBIs; RMSSD = root mean

square of differences between IBIs), an estimate of sympathetic-related variability (CSI = Toichi cardiac sympathetic index), and estimates of parasympathetically

controlled variability (MSD = mean of absolute value of consecutive IBI differences; pnn50 = proportion of consecutive IBI differences greater than 50 ms;

RSA = natural log of variance of filtered (.12–.40 Hz) IBI time series; CVI = Toichi cardiac vagal index).
factor. These analyses addressed the extent to which these

various measures shared variance across individuals, but did not

address the extent to which they were similarly sensitive to

change within individuals. The change in scores from baseline

to stressor was therefore examined.
Table 3

Factor loadings for metrics at rest and during paced arithmetic

Rest Paced

Factor 1 Factor 2 Factor

HRV .97 – .96

SDNN .96 – .97

RMSSD .82 �.52 .73

CSI – .97 –

MSD .78 �.57 .70

pnn50 .67 �.69 .69

RSA .85 �.46 .73

CVI .89 �.41 .83

Note: N = 96; loadings greater in magnitude than .3 are shown. Factor analysis include

SDNN = standard deviation of IBIs; RMSSD = root mean square of differences betw

sympathetic index), and estimates of parasympathetically controlled variability (MSD

consecutive IBI differences greater than 50 ms; RSA = natural log of variance of fi
3.4.1. Change scores in measures

To reflect reactivity due to the stress task, change scores

(stressor task minus rest) were computed. Intercorrelations

amongst change scores for these metrics of heart rate and heart

rate variability (Table 2) were moderate to high (median
arithmetic (PA) Change from rest to PA

1 Factor 2 Factor 1 Factor 2

– .89 –

– .93 –

�.63 .90 –

.95 – .97

�.65 .84 –

�.65 .71 –

�.63 .81 �.37

�.52 .93 –

d measures of total variability (HRV = natural log of variance of IBI time series;

een IBIs), an estimate of sympathetic-related variability (CSI = Toichi cardiac

= mean of absolute value of consecutive IBI differences; pnn50 = proportion of

ltered (.12–.40 Hz) IBI time series; CVI = Toichi cardiac vagal index).
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Table 4

Ability of metrics to discriminate between tasks

Mean (S.E.) F P h2

Rest Paced arithmetic

IBI 840.2 (12.71) 724.8 (12.60) 325.6 <.001 .77

HR 73.4 (1.09) 86.0 (1.54) 201.2 <.001 .68

HRV 7.9 (.08) 8.3 (.07) 28.4 <.001 .23

SDNN 61.3 (2.90) 68.6 (2.45) 9.0 <.003 .09

RMSSD 56.2 (3.70) 43.5 (2.60) 27.7 <.001 .23

CSI 2.2 (.07) 3.5 (.17) 91.9 <.001 .49

MSD 44.4 (2.97) 32.0 (1.95) 39.7 <.001 .30

pnn50 29.4 (2.32) 18.6 (1.62) 66.3 <.001 .41

RSA 6.7 (.10) 6.5 (.10) 7.1 <.01 .07

CVI 4.6 (.04) 4.6 (.04) .39 n.s. .004

Note: N = 96; analysis included measures of rate (IBI = mean interbeat interval;

HR = mean heart rate), measures of total variability (HRV = natural log of

variance of IBI time series; SDNN = standard deviation of IBIs; RMSSD = root

mean square of differences between IBIs), an estimate of sympathetic-related

variability (CSI = Toichi cardiac sympathetic index;), and estimates of para-

sympathetically controlled variability (MSD = mean of absolute value of con-

secutive IBI differences; pnn50 = proportion of consecutive IBI differences

greater than 50 ms; RSA = natural log of variance of filtered (.12–.40 Hz) IBI

time series; CVI = Toichi cardiac vagal index).
magnitude r = .45) and metrics of parasympathetically influ-

enced variability were more strongly intercorrelated (median

r = .61). Exploratory factor analysis extracted two factors that

were highly similar to those described above, jointly

accounting for 81% of the variance (Table 3).

3.5. Sensitivity to experimental manipulations

To determine whether metrics were able to discriminate

between tasks, separate analyses were conducted using

repeated measures general linear model for each metric. All

metrics except Toichi’s CVI (Table 4) discriminated robustly

between the rest and stressor task, although effect sizes varied

quite substantially.

4. Discussion

Although several metrics converged as expected, the overall

pattern of results suggests that metrics putatively tapping

vagally mediated cardiac variability correlate highly with

metrics summarizing total variability. This may reflect that, at

rest, a majority of variability in cardiac chronotropy is due to

parasympathetic influences. Fig. 3 supports this interpretation,

as most of the power in the raw spectrum is in ranges passed by

the various transformations of the IBI series that form the basis

of the various metrics. The present results apply only to

relatively sedentary laboratory conditions, and generalization

beyond these conditions is not warranted.

Evidence from the analysis of metrics during rest and

arithmetic stressor suggests that measures are differentially

sensitive to the stressor manipulations, with all measures except

for Toichi’s CVI significantly discriminating rest from stressor

task but with markedly different effect sizes. Given the

relatively high correlation of CVI with other measures of

vagally influenced variability, it is surprising that this measure
was not sensitive to the task manipulation, but suggests it may

not be used interchangeably with the more standard measure of

RSA based on respiratory band-limited variance.

Given the present results, it may be tempting to assume the

interchangeability of many of the metrics, but given the

variability between the transfer functions of the various metrics,

a band-limited filtered IBI series (e.g. .12–.40 Hz in the present

study), or power from the same frequency range using spectral

analysis, may be preferred as they adequately summarize cardiac

variability in the respiratory frequency range, and attenuate

slower frequencies with a steep roll-off. Other metrics such as the

Toichi metrics are included as they appear to hold some promise,

but are largely unexplored. Computationally simple metrics with

broad and irregular transfer functions were included merely to

assess comparability across studies. Although at rest all metrics

perform somewhat similarly, it is worth noting that they have

widely different effect sizes in terms of discriminating rest from

the arithmetic stress task, and if researchers are interested in

solely vagal contributions, they would be well advised to use

measures that are most likely to reflect respiratory-linked vagally

mediated control of cardiac chronotropy.

A freely available suite of software tools for obtaining the

IBI series from EKG data and computing many metrics of

cardiac chronotropy is described in Appendix A. Given the

increasing interest in using measures of cardiac vagal control in

research on health, emotion, development, and psychopathol-

ogy, it is hoped that these tools will stimulate further interest in

the field, and encourage researchers new to this field to begin

using measures of cardiac vagal control in their research.
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Appendix A. QRSTool and CMetX: a software suite to

obtain metrics of cardiac vagal control

A suite of tools for transforming EKG data to metrics

of cardiac variability is freely available from http://www.

psychofizz.org, under the appropriate link. These tools run

under various versions of the Microsoft Windows operating

system. QRSTool provides a graphical user interface that will

allow for the extraction of the IBI series from EKG data,

whereas CMetX is a command-line based utility that will

calculate several metrics of cardiac chronotropy given a simple

IBI series as input. The tools are integrated such that users who

choose to extract the IBI series with QRSTool can have metrics

calculated directly by CMetX. The programs also can be used

independently: CMetX can derive metrics given any IBI series

http://www.psychofizz.org/
http://www.psychofizz.org/
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Table A.1

Common QRS detection problems and solutions in QRSTool

Problem Possible cause Common solution QRSTool solution

Time-varying amplitude

of PQRST complexes

Amplifier drift Adaptive threshold techniques Average minimum/maximum beat

detection algorithm

Skin potential artifact Peri-beat filter correction algorithm

(following manual insertion of beats)

Changes in sensor impedance

Participant movement

Atypical PQRST morphology Sensor placement Accentuate higher frequency

components, e.g.

Derivative transform

T-waves larger than R-spikes Participant physiology Derivative based algorithms Length-transform beat detection algorithm

Large Q- or S-spikes Filtering Peri-beat filter correction algorithm

(following manual insertion of beats)

Baseline drift of EKG signal/dc

noise (dc-coupled amplifiers)

dc-coupled amplifier High-pass filter Filtering (externally created filters)

Skin potential artifact Peri-beat filter correction algorithm

(following manual insertion of beats)

2 It is not clear how much the phase shift that result from filtering affects

measures of heart-rate variability. Unless PQRST morphology varies through-

out the ECG signal, the phase-offset for any given filter should be relatively

constant.
as input, and QRSTool can extract the IBI series to then analyze

using other programs or algorithms. Each program is described

below.

A.1. QRSTool: software for deriving a reliable IBI series

from EKG data

There are a number of software packages designed to detect

beats in raw EKG data. Typically, such software does not allow

online modification of the beat series, and as such, the output

must be visually inspected for missed or extra beats. Errors in

beat series must be modified manually, e.g. deletion of extra

beats, or interpolation of beat times for skipped beats. This

process can require multiple passes of correction and

visualization before a beat series is acceptable.

QRSTool is an EKG beat detection software program that

allows for modification of beat assignments while simulta-

neously viewing the resulting IBI series. Missed and extra beats

can be identified by visual inspection of the IBI series, and

corrected by manual addition or removal of individual beats.

The EKG and IBI series are displayed in separate vertically

stacked time-locked windows, with identified beats marked on

the EKG series.

There are a number of EKG transform functions (e.g.

filtering) that create additional, separate EKG series, each of

which can be selected as the currently visible EKG series. Beat

markers are placed directly on the visible EKG series, allowing

for comparison of beat placement between different series. This

function can be useful in assessing the extent to which features

in the transformed data are shifted with respect to the same

features in the raw series (e.g. filtering; see below).

QRSTool also includes automated beat detection algorithms.

The simplest of these is a threshold function, which assigns

beats to all maxima or minima in the EKG time series that

exceed a set threshold (typically, the maxima corresponding to

the R-wave). Like many of the functions in QRSTool, the

threshold detection tool can be applied to the entire series or to

manually selected portions. Limiting beat detection to selected
portions of the EKG series can be useful in cases where the

series varies with respect to signal or noise amplitude.

QRSTool also includes a limited filtering function.

Externally generated filters may be imported into QRSTool

(as text coefficients), and then applied to the EKG series. It is

important to note that, since the PQRST complex is not

symmetrical, portions of the filtered complex (e.g. the R-spike)

may be phase-shifted with respect to the original series. The

degree to which this occurs depends on both the filter

parameters and possibly time-varying characteristics of the

original EKG signal (e.g. PQRST complex amplitude). As

such, if threshold detection is applied to a filtered series, it is

often useful to compare beat locations in both the original and

filtered series (by changing which is visible in the EKG

window).2

QRSTool is equipped to handle those cases where threshold

beat detection is not possible. Table A.1 lists common QRS

detection problems and the solutions offered in QRSTool. EKG

recorded with dc-coupled amplifiers may include baseline drift,

making any given threshold valid for only a few beats. The peri-

beat filter correction algorithm (described below) may be useful

for such data, since the algorithm uses only local signal

characteristics. In cases where T-wave amplitudes are similar to

or exceed R-spike amplitude, a first-order derivative transform

is available (essentially amplifying higher-frequency compo-

nents). A somewhat more sophisticated function uses the

length-transform (Gritzali, 1988) to accentuate R-spikes in the

process of beat detection (however, as of this writing, it is not

clear that this algorithm is more robust than filtering or

derivative transforms).

QRSTool also includes beat correction algorithms, which are

applicable to series where at least some beats have already been
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Table A.2

Metrics output by CMetX, with notes concerning computation

Metrics of rate, which are influenced by both parasympathetic (PNS)
and sympathetic (SNS) influences
Mean interbeat interval (IBI), calculated as simple average of IBIs

Mean heart rate (HR), calculated as the average of the rate-transformed

IBIs, not as the rate-transformation of the average IBI

Metrics summarizing total heart rate variability, which are influenced by
both SNS and PNS

Heart rate variability (HRV), operationalized as the natural log of the

variance of the IBI time series

Standard deviation of IBI series (SDNN); NN in the acronym SDNN

is the abbreviation for ‘‘normal-to-normal intervals,’’ which is the

artifact-free IBI series

Root mean square of successive differences between IBIs (RMSSD)

Putative sympathetic metric
A cardiac sympathetic index (CSI; Toichi et al. (1997), see Fig. 1)a

Putative parasympathetic metrics
Mean absolute successive IBI difference (MSD)

Proportion of consecutive IBI differences >50 ms (pnn50)

Respiratory sinus arrhythmia (RSA), defined as natural log of band-

limited (.12–.40 Hz) variance of IBI time series

A cardiac vagal index (CVI; Toichi et al. (1997), see Fig. 1)a

Note: IBI series refers to the series of IBI values in ms; IBI time series refers to

the 10 Hz sampled interpolation of the IBI series to create a time series.
a Toichi parameters are based on the Lorenz plot, in which deviations in the

direction transverse to the line IBIn = IBIn + 1reflect high beat-to-beat varia-

bility and putatively reflect predominately parasympathetic influences. For

calculations, axes were rotated �458 so that L was now parallel to the X-axis

(the authors wish to thank Scott Vrana for this helpful suggestion with the

rotation of the axes). After rotation L and T were estimated as four times the

standard deviation of points along the respective axes (4 S.D.s reflecting a

truncated normal distribution). Finally, two indices were calculated as described

by Toichi et al. (1997)—cardiac vagal index: CVI = log(L � T); and, cardiac

sympathetic index: CSI = L/T.
identified. One of these is a function which locks beats to local

maxima or minima in the visible series; this algorithm may be

applied, for example, to move beats detected by phase-shifted

peaks in a filtered series to the actual maxima or minima in the

original series. Another function that has proven useful for both

beat detection and correction is the peri-beat filter. This

algorithm uses existing beats to create an ‘‘average’’ beat,

which is in turn applied as a filter to the EKG time series. Since

the center of the filter corresponds to existing beat locations, the

newly created series will have maxima at points where the

original series is similar to the ‘‘average’’ beat. This algorithm is

useful in cases where the EKG signal is not globally similar, e.g.

baseline drift, or time-varying changes in PQRST amplitude.

QRSTool also allows hand placement of peaks for those

cases where visual inspection is required to identify the beat.

Also, in case of ectopic beats due to premature ventricular

contraction that are then followed by a lengthy compensatory

delay before the subsequent beat, Porges (2007) recommends

that a beat be placed midway between beats on either side of the

ectopic beat, a feature that is easily implemented with

QRSTool. Porges (2007) notes that these ectopic ventricular

complexes will artificially inflate the estimate of RSA by

adding ventricular-related variance that is independent of the

vagal modulation of the sino-atrial node.

Once an acceptable IBI series has been created, the series may

be exported for further analysis (as of this writing, QRSTool does

not incorporate any functions for the analysis of heart-rate

variability). QRSTool was specifically developed to work in

conjunction with CMetX, and as such, automates both the export

of the IBI series and execution of CMetX on the resulting file.

However, QRSTool can export IBI series in a number of different

formats for use with other analysis packages. Manual selection,

or selection based on events, may be used to export portions of the

IBI series. This functionality may be useful for experiments

where one EKG record exists for a number of different

conditions. Currently, QRSTool allows both manually inserted

events, as well as events imported from Neuroscan CNT files.

QRSTool has, in addition to the GUI menu and button driven

methods of processing data, some scripting functionality that

can automate parts of the process such as exporting the artifact

free series, opening files, applying certain types of filters, etc.

Commands stored in ASCII text files can be opened and

executed within QRSTool.

A.2. CMetX: software for calculating many metrics of

cardiac chronotropy

CMetX is a command-line based program that calculates

many metrics of cardiac chronotropy, given an IBI series as

input. The IBI series is contained within an ASCII file, with

each IBI in ms on a separate line. The resultant output provides

metrics summarized in Table A.2.

A.2.1. Filtering the IBI series, following transformation to

a time series

An IBI series in not, strictly speaking, a time series, as the

data occur at uneven intervals, provided that there is variability
in cardiac chronotropy, the very phenomenon of interest! An

IBI series can be converted to a time series by interpolating data

points at a fixed sampling rate. CMetX program implements a

10 Hz sampling rate with linear interpolation, as illustrated in

Fig. A.1.

Whereas Porges’ MXEdit program uses a moving poly-

nomial filter, CMetX uses an optimal finite impulse response

digital filter designed using FWTGEN V3.8 from Cook and

Miller (1992). The default filter is a 241-point FIR filter with a

.12–.40 Hz bandpass, constructed using a Hamming window-

ing option. It is applied to a time-series representation of the IBI

series, at a sample rate of 10 Hz. The transfer function of the

filter is shown in Fig. A.2. In the process of convolving a filter

over a time series, data points at the beginning and end of the

series will not be filtered, and are thus ‘‘lost’’ (see Fig. A.3).

CMetX also includes three other filters that can be selected

instead of the default .12–.40 Hz filter, including .15–.40

(alternate for adult, in line with the recommendations of the

Task Force of the European Society of Cardiology and the

North American Society of Pacing and Electrophysiology,

1996), .24–1.04 (for infant), and .3–1.3 (for newborn).

Additionally, with version 2.6 and later, CMetX users can

specify filter parameters ranging from 0 to 5 Hz, and CMetX

will design and apply an optimal finite impulse response 241-

point digital bandpass filter using the algorithm specified in

Cook and Miller (1992) with a hamming window. Finally, users
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Fig. A.2. Transfer function of filters used by CMetX. Larger panel shows the default .12–.40 Hz bandpass filter and the alternate .15–.40 Hz filter for adults, whereas

inset shows all four available filters. All filters are 241-point FIR filters.

Fig. A.1. The first 40 IBIs for a sample participant in cardiac time (left) and real time sampled at 10 Hz (right).

Fig. A.3. Time-series representation of IBI series for two participants (top panels), and the filtered versions of those series (lower panels), resulting in a loss of 12 s of

data at both ends of the series. The variability in the lower panel represents that potion of the total variability within the respiratory frequency band, and that putatively

reflects vagal influence.
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Table A.3

Correlations between metrics obtained with CMetX and with Porges’ MXEdit

program

Metric Baseline Arithmetic

HRV .995 .997

RSA .992 .995

Mean IBI 1.000 1.000

Mean HR 1.000 1.000

# IBIs 1.000 1.000
familiar with filter design can create and import their own

coefficients as well.

A.2.2. Computation of metrics, and comparison to

Porges’ VHat

All metrics are calculated for only the IBIs that correspond

to the sampled timepoints that are retained after the filter is

applied to band-limit the signal to calculate RSA. The filter

results in a loss of 12 s of data at the beginning and 12 s at the

end of the file. All metrics are therefore based on the same

subset of the data, but users may wish to include data 12 s prior

to and 12 s following the time window of interest to

accommodate this data loss.

Many metrics are calculated on the raw IBI values, as they

involve the standard deviation, the variance, or a root mean

square of the raw IBI values (or difference between successive

values). Others, such as RSA – which involves the extraction

of specific frequencies of variability – require series in real

time.

Correlations were obtained between the metric of RSA from

CMetX and that from MXEdit V2.21 from Porges with a

sample of 96 college students (described in Section 2), at rest

and paced arithmetic. Correlations were near unity, as

presented in Table A.3. Thus, CMetX produces data that

appear highly comparable to those obtained using the Bohrer

and Porges method that is part of the more user-intensive

MXEdit program. Moreover, CMetX can be called directly

from QRSTool, obviating the need for a separate user session to

derive the metrics of cardiac chronotropy.

Finally, comparisons of the estimate of RSA from CMetX

were compared to spectral power from the FFT of the IBI series

for these same 96 subjects. Power spectral density estimates

were obtained for the 10 Hz sampled time series representation

of the IBI series, averaging successive windows of length

5.12 s, overlapping by 3.84 s, with a 50% Hamming window.

Natural log-transformed spectral power and natural log-

transformed spectral amplitude were extracted from the .12–

.40 Hz range. At rest, RSA from CMetX correlated .986 with

spectral power, and .984 with spectral amplitude; during the

stressor, correlations were .992 for spectral power, and .997 for

spectral amplitude. Thus although the filter used for CMetX has

a transition band at the low and high cutoff, the resultant time–

domain metric (natural log of band-limited variance) provides a

result that would be virtually indistinguishable from that

derived in the frequency domain (natural log of .12–.40 Hz

spectral power or amplitude).
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