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Abstract

There exists a substantialiterature examiningfrontal electroencephalographa&symmetriesn
emotion, motivation, and psychopathology. Research in this area uses a specialized set of approaches
for reducing raw EEG signals to metrics that provide the basis for making inferences about the role
of frontal brain activity in emotion. The present review details some of the common data processing
routines used in this field of research, with a focus on statistical and methodological issues that have
captured, and should capture, the attention of researchers in this field.
© 2004 Published by Elsevier B.V.
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The field of research examining frontal electroencephalographic (EEG) asymmetries in
emotion and psychopathology is now over two decades old, with over 80 published studies
documenting relationships between asymmetries in frontal EEG power and emotion-related
traits and states (s€an and Allen, 2004his issue, for review). Although data reduction
and analytic techniques have varied across studies, there are many common approaches that
have become quite popular for transforming raw EEG signals to metrics that provide the basis
for making inferences about the role of frontal brain activity in emotion. These approaches
involve many transformations of the data, and in that process involve assumptions that can
impact the interpretations scientists can levy from a given pattern of results.

The aim of this paper, therefore, is to provide a general overview of some of the common
steps involved in data processing in this field, highlighting the assumptions and the impact of
violations of these assumptions for interpreting findings. It is important to note that none of
the issues raised in this paper call to question the now well-replicated relationships between

* Corresponding author. Teh:1-520-621-4992.
E-mail addressjallen@u.arizona.edu (J.J.B. Allen).

0301-0511/$ — see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.biopsycho.2004.03.007



184 J.J.B. Allen et al./Biological Psychology 67 (2004) 183-218

the metrics of EEG asymmetry and emotional constructs. The issues will, however, have
implications for how the findings best be interpreted.

1. From raw signalsto handy metrics

Investigators who examine frontal EEG asymmetry use a set of relatively specialized
signal processing routines, which will be reviewed anon. This review is not intended so
serve as a primer for basic signal processing, but rather is designed to highlight the data
reduction trail typically followed in this specific research domain. For a basic primer, many
sources are available, including easily accessible chapteesdiyon (2000and byReilly
(1987) and a more in depth treatment ®yaser and Ruchkin (1976)

Fig. 1depicts the many steps typically involved in transforming electroencephalographic
signals into metrics that putatively are related to how active various brain regions may be.
This process involves taking a signal collected in the time-domain (Panel A, left side), and
converting it to a frequency-domain representation, usually in the form of a power spectrum
(Panel A, right side). This spectrum, which collapses data across time, summarizes which
frequencies are present to greater or lesser degrees in the time-domain signal. Whether data
are collected from an extended resting period involving several minutes, or from discrete and
relatively short emotion-related segments, this spectral analysis approach always involves
examining the frequency composition of short epochs (Panel B), on the order of 1 or 2s
each, and averaging power spectra across many such epochs. In the case of resting data,
this involves epoching a large data segment into many smaller epochs. In the case of EEG
acquired in the context of fleeting emotional expression or experience, the data segment
might still require being epoched into a few smaller epochs, and data from several such
expressions or experiences would then be aggregated.

By using epochs that are only 1 or 2 s-long, one more closely approximates an assumption
underlying the Fourier transform, the method used to derive power spectra from raw signals.
Fourier analyses assume a periodic signal (the stationarity assumption), and moreover that
any periodic signal can be decomposed into a series of sine and cosine functions of various
frequencies, with the function for each frequency beginning at its own particular phase.
A periodic signal is one that repeats, and does so at uniformly spaced intervals of time.
Although strictly speaking EEG signals are not periodic, as the repetition of features is
not precisely spaced at uniform intervals, by selecting short epochs one can analyze small
segments of data that will have features that repeat in a highly similar fashion at other points
in the waveform.

Epoching typically involves the construction of overlapping epochs (Panel B), as weight-
ing functions applied in the process of “windowing” (described below) prior to frequency
analysis result in the central portion of the epoch receiving the most weight, and distal
portions receiving negligible weight (Panel C). By overlapping the epochs, all data points
receive maximum weighting in some epoch.

Windowing is used to avoid creating artifactual frequencies in the resultant power spec-
tra. Because Fourier transforms assume a periodic signal, it is assumed that the signal in
the epoch repeats infinitely both forwards and backwards in time, and without the win-
dowing function to reduce the ends of the epoch to near-zero values, discontinuities would
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Fig. 1. Depiction of the various data reduction steps typically used in frontal EEG asymmetry research. Panel A depicts a 10-s segment of rawsifegéefobrarael
on the left, and the spectral representation of this epoch on the right. Panel B illustrates the process of epoching the longer segment intdegipng2esepochs.
Panel C depicts the impact of the Hamming window (dotted bell curve) on a single epoch, with the gray line representing the raw signal and theepliadelitiag
the signal after the application of the window. Note that a discontinuity would result if a copy of the raw (gray) signal were concatenated faasigmgthbut no
such discontinuity would result for a similarly concatenated windowed (black) signal. Panel D displays the net weighting (black line, scalephtpdftarerlapping
hamming windows (gray lines) for 2-s epochs. Panel E illustrates the impact of averaging power spectra. The top nine gray lines are the spautiatibrepfesne
2-s epochs, and the lower black line is the average spectrum. Note that alpha power (8—13 Hz) is somewhat variable from epoch to epoch, but ¢fess pleetavara
reveals a distinct alpha peak. Vertical axis in Panel E is powghif.
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result if one were to place a copy of the epoch immediately before or after itself. Fourier
methods would introduce a variety of spurious frequencies to reconstruct a signal with such
discontinuity. By windowing, the discontinuity is avoided (Panel C), but at the expense of
preventing the data near the end of the epoch from being fully represented in the resultant
power spectrum. The overlapping of epochs (Panel D) provides a solution to this latter
problem, as data minimally weighted at the end of epoefill be weighted more heavily

in epochx + 1.

Most computer signal processing packages use a fast Fourier transform (FFT), which as
the name implies is considerably faster and computationally less complex than the more
general case discrete Fourier transform (DFT). The FFT requires that the epochs to be
analyzed have2data points. Data are often sampled at a rate that is a power of two, thus
allowing epochs of 1 or 2 s, but in other cases of sample rates that deviate from a power of
two (e.g., 250 Hz), epoch length will need to be tailored accordingly (e.g., 2.048s). For a
data segment of 1024 data points, the DFT will take about 10 times longer to arrive at the
same result as the FET.

The result of the FFT is two spectra, a power spectrum and a phase spectrum. The power
spectrum reflects the power in the signal at each frequency from dc to the Nyquist freduency,
with a spectral value every TLioints, whereT is the length of the epoch analyzed. The
phase spectrum presents the phase of the waveform at each intérvitidée two spectra
can jointly be used to reconstruct the original time-domain waveform. Psychophysiologists,
however, typically discard the phase spectrum and focus their analyses only on the power
spectrum.

As an FFT is applied to each epoch, many power spectra result, and the average of these
power spectra is ultimately taken as the basis for analysis (Panel E). The data in this resultant
spectrum might entail between 20 and 200 data points (the precise numberbe{ifi2),
dependent on the epoch lengftand the sample rat®, a substantial reduction from the
raw data signal that will likely have hundreds of data points per second for several minutes.
The spectra represent, therefore, a relatively economical representation of the original sig-
nal, with higher sampling frequencies and longer epochs resulting in more spectral points.
Further reduction is accomplished by summarizing data within conventionally-defined fre-
quency bands. Alpha power, either to{@\2) or density (LV2/Hz), is most often examined,
and is typically operationalized as power between 8 and 13 Hz in adults, although lower
frequencies have been examined in children (for reviewGeen and Allen, 2003b as
these lower frequencies in the developing brain are assumed to be equivalent to adult alpha

1 The DFT transform is a general case instantiation of the Fourier transform for discretely sampled signals, but
it is computationally intensive, with the time taken to compute the spectral representation being proportional to
the square of the number on points in the series. The comparable computation time using the FFT, by contrast, is
proportional toN(logz(N)). For an epoch of 1024 pointd/(= 1024), the DFT will take 102.4 times longer than
the FFT to compute the spectral representation of the signal.

2 The Nyquist frequency, named after Henry Nyquist, is the fastest frequency that can be represented for a given
sampling rate, and is equal to 1/2 the sampling rate. Nyquist, whose entire career was at AT&T Bell Laboratories,
published a 1928 papeNyquist, 1928 in which he proposed a theorem that a sample rate twice as fast as the
highest signal frequency will capture that signal perfectly. Stated differently, the highest frequency which can be
accurately represented is one-half of the sampling rate, and this frequency has come to be known as the Nyquist
frequency.
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Fig. 2. Skewness statistic (top panel) and Kurtosis statistic (lower panel) for natural log transfrenesl) @nd

raw (Y-axis) power values. Statistics were calculated on 34 subjects with complete resting EEG data reported in
Coan and Allen (2003dpr each of 18 scalp sites (FP1, FP2, F3, F4,F7,F8, FTC1, FTC2, C3,C4, T3, T4, T5, T6,
TCP1, TCP2, P3, P4) using the average reference. The solid line in each plot represents the demarcation between
improvement towards normality (above the line) from greater deviation from normality (below the line) as a result

of the natural-log transformation.

(e.g.,Fox and Davidson, 1987Alpha power is then taken as an index of the inverse of
cortical activity Davidson, 1988 an assumption that will be explored further below.

Alpha power at any given site then is typically natural log transformed, as untransformed
power values tend to be positively skewed, as depictdeign2 The top panel ofig. 2
depicts the Skewness Statistic for the raw power valtesx(s) and the natural-log trans-
formed values X-axis) at each of 18 scalp sites. The lower panel similarly depicts the
Kurtosis statistic for the same data set. The solid line in each plot represents the demarca-
tion between improvement towards normality (above the line) and greater deviation from
normality (below the line) as a result of the natural-log transformation. As can be seen
from the figure, the transformation improves the skewness for 89% of the scalp sites, and
improves kurtosis for 83% of the scalp sites. In absolute terms, using the 95% confidence
intervals, prior to natural-log transformation, 94% of sites deviated significantly from nor-
mality in terms of skewness, and 83% deviated significantly in terms of kurtosis. Following
transformation, only 33 and 39% of sites still deviated significantly from normality in terms
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of skewness and kurtosis, respectively. Thus although some sites still exhibit distributions of
natural-log transformed scores that deviate from normality, the natural-log transformation
substantially improves the distributional characteristics of the data.

2. Comparing left and right activity

Because asymmetrical activity is of interest, investigators often use a difference score
(In(Right) — In(Left) alpha power) to conveniently summarize the relative activity at ho-
mologous right and left leadsThe difference score thus provides a simple unidimensional
scale representing the relative activity of the right and left hemispheres, with higher scores
putatively indicative ofrelatively greater left frontal activity (assuming that alpha is in-
versely related to activity). An additional benefit of this difference score metric is that it
provides some degree of correction for overall alpha power, as large individual differences
in overall alpha power could be confounded with the magnitude of the asymmetry. The
correction for overall power stems from the fact that the natural log difference score metric
is not a simple difference score, but a difference of natural log transformed scores. Rules
of logarithmic subtraction state that the difference of two natural-log transformed scores is
equivalent to the natural log transform of the ratio of these scores:

In(R) —In(L) =In (%) ()

Thus this difference metric is actually the natural log transform of the ratio of right to left
alpha power, which provides some degree of correction for overall power expressing each
subject’'s asymmetry in terms of a ratio. The extent of the correction is confirmed by com-
paring the values of the natural log difference score metric to another sometimes-utilized
metric, a “normalized” difference score computed(&— L)/(R + L). This normal-

ized difference score metric correlates over 0.99 with the natural log asymmetry metric
(In(Right) — In(Left); Allen et al., 2004. There is in fact a nonlinear function relating these
two metrics over a broad range of scores, because when Bitbrelr gets very small, the
normalized metric is bounded by the values 1 aridand the natural-log asymmetry metric

will not have such bounds. Over the range of values encountered in asymmetry research,
however, the function is almost perfectly linear, as illustrateign 3.

The difference metric is rather handy in several respects, notably that it mitigates the
impact of individual differences in skull thickness that would have sizeable influences on
recorded signal amplitud&éhel et al., 1995; Leissner et al., 1970; Pfefferbaum, J, 290
the difference scores can simplify analyses, such as those involving correlations between
frontal asymmetry (as a difference score) and an individual difference measure (e.g., Be-

3 Similar distributional improvements as a result of natural log transformation are seen for the asymmetry
scores based on these log transformed values. Comparing asymmetry scores based on the difference of natural-log
transformed and untransformed values, the transformation improves the skewness of the asymmetry score for 67%
of the scalp sites, and improves kurtosis for 89% of the scalp sites. In absolute terms, using the 95% confidence
intervals, prior to natural-log transformation, 67% of the differences scores deviated significantly from normality
in terms of skewness, and also kurtosis, but following transformation, only 22 and 33% of asymmetry scores still
deviated significantly from normality in terms of skewness and kurtosis, respectively.
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Fig. 3. The relationship of the asymmetry metriqRight) — In(Left)) and a metric normalized for overall power
((R—L)/(R+L)),overalarge range of possible alpha power values. In asymmetry researctRigbin-In(Left)
metric produces scores that typically are in the range@b, the range demarcated by the two lines, where the
relationship is linear. Fromllen et al. (2004) reprinted with permission from Blackwell Publishing. © 2004,
Society for Psychophysiological Research.

havioral Activation ScaleCoan and Allen, 2003a; Harmon-Jones and Allen, 1997; Sutton
and Davidson, 1997

Difference scores have been criticized for their potential unreliability, as errors of mea-
surement with each of the constituent scores are compounded when the difference score is
calculated. The reliability of change scores is of greatest concern, however, when the con-
stituent scores have modest reliability. Alpha power at a given lead, however, demonstrates
extremely high reliability, with coefficient alpha values typically over 0.90 based on 8 min
of data. Moreover, the reliability of the difference score for frontal regions has been calcu-
lated in several studies and routinely is high, excepting frontal pole sites (e.g., coefficient
alphas for frontal asymmetry (difference) scores ranging from 0.85 to 0.90 at baseline in
Allen, Urry, Hitt, and Coan (2004Jrom 0.76 to 0.91 irCoan and Allen (2003aa median
of 0.83 inCoan et al. (2001 )from 0.80 to 0.93 irReid et al. (1998)and from 0.81 to 0.92
in Tomarken et al. (1992)

4 Aseparate issue concerns the power of statistical tests that employ difference scores. The power of significance
tests using difference scores is only indirectly influenced by the reliability of these scores. Significance tests of
differences can be powerful even if the reliability of the difference scores is near@eeoa|l and Woodward,

1975; Zimmerman et al., 1993rhe paradox pointed out yverall and Woodward (197% that difference scores

with zero reliability can in fact give rise to high power to detect a significant difference. The paradox is resolved
when one considers that reliability of the difference scores depends on the existence of variance in the difference
score that can reliably rank-order individuals in terms of ithegnitudeof their difference scores, but that the
power to detect a difference involves assessimgandifference between the two scores relative to the variance in
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Despite the simplicity of the difference score, the contribution of activity in each hemi-
sphere is ultimately of interest, which will require analyses involving the examination of
data from each hemisphere as a difference metric is uninformative with respect to the con-
tribution of each constituent hemispheBagidson et al., 2000aThe most straightforward
approach involves analyzing (In-transformed) power at left and right sites in an analysis of
variance (ANOVA) or the more general linear model (GLM), with not only region (anterior
to posterior) as a factor, but hemisphere (left versus right) as well. In these models, indi-
vidual differences in overall power are removed, and region specific variations in power
(e.g., occipital alpha is greater than frontal alpha) are partitioned as region main effects. In
such a model, with EEG power as the dependent variable, the interaction of an independent
variable with hemisphere will yield the same information as a main effect of this inde-
pendent variable when using asymmetry scores as the dependent variable. The follow-up
tests to decompose the interaction can then examine the contribution of each hemisphere
individually.

The standard ANOVA approach provides a straightforward method of examining the
power from each hemisphere’s lead or leads when the independent variable of interest is
amenable to the ANOVA approach, such as when comparing depressed and nondepressed
subjects, or when comparing two or more emotion elicitation conditions. This approach
is limited, however, as the standard ANOVA with a between subjects or within subjects
factor fails to allow for an examination of the power at a given lead or leads with a contin-
uously varying independent variable such as ratings of emotional valence or intensity, or
an individual difference variable such as behavioral activation. There exist a few published
approaches that have included a continuous predictor in the model, the whole-head and
homologous-lead residualized power approach first reportétitigeler et al. (1993and
the hierarchical general linear model strategy (€gan and Allen, 2003ar mixed model
strategy (e.gKline et al., 2002.

2.1. Residualized power approach

Wheeler et al. (1993adopted a two-stage analytic approach, examining first the corre-
lation between the asymmetry difference score and continuous measures of self-reported

this difference score. Thus if one constituent score (e.g. Left activity) were for every subject a chiestarihan

the other constituent score (e.g. Right activity), then there would be no variability in the difference scores, and no
reliability. On the other hand, the mean difference score wouk] éth no variance around that mean, allowing

for a powerful statistical test that the mean difference is significantly different than zero, and that a statistically
significant difference has been found. The pragmatic implications are that the reliability of difference scores if are
of little consequence if one wishes to test the significance of such a difference (e.g. to test that Right activity is
greater than Left activity for the group as a whole), but the reliability of the difference score will be highly relevant
when one is using the difference score to examine how individual differences in that difference score relate to
other variables of interest (e.g. how individual differences in the asymmetry score relate to individual differences
in BAS scores). In the latter case, the reliability of the difference score will impose constraints on the magnitude
of the correlation that can be observed, as the maximum correlation that can be observed between two variables
will be the square root of the product of the reliability of the two variables. Thus, because a sizable portion of the
research examining frontal EEG asymmetry is concerned with the relationship of individual differences in frontal
EEG asymmetry to other individual difference measures, the reliability of the asymmetry metric assumes great
importance.
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Table 1
Correlations between natural-log transformed alpha power at homologous leads collected for 8 min under resting
conditions

Sites Reference
AR LM

FP1-FP2 0.997 0.998
F7-F8 0.983 0.971
F3-F4 0.990 0.992
FTC1-FTC2 0.975 0.943
C3-C4 0.977 0.981
T3-T4 0.918 0.891
TCP1-TCP2 0.944 0.948
P3-P4 0.965 0.982
T5-T6 0.907 0.932

Note.AR: average reference, LM: computer linked mastoid reference; data from 34 subjects rep@tethin
etal. (2001)

affect. Upon finding significant correlations, the second stage was to investigate the contri-
bution of each hemisphere, but unconfounded by the large individual differences in power
due to irrelevant factors such as scalp thickness. Power at a given electrode (e.g., F3) was
residualized, using a hierarchical regression, first entering the average power across avail-
able scalp sites, and as the second step entering power from the homologous lead (e.g., F4).
The resultant residualized values were then correlated with the variable of interest (e.g.,
self-reported affect).

The first step of this procedure preserves individual patterns of activity across scalp sites,
adjusted for overall power. The second step of this procedure was introdud&tidsier
et al. (1993)stensibly to statistically account for volume-conducted activity from the ho-
mologous electrode. Itis unclear why one would be more concerned with volume conduction
from a lead over the opposite hemisphere, which in many instances is considerably further
away from the site of interest than ipsilateral leads adjacent to the site. On the other hand,
the activity between homologous leads is often highly correlated, with alpha power values
being correlated on the order of 0.95 or even higher Tséée 1),° and could in part reflect
the dense contralateral cortico-cortical connections between some homologous regions as
well as volume conduction effects. As seeTable 1, correlations are uniformly high, but
higher yet between closely spaced homologous leads (e.g., FP1 and FP2) as compared to
more widely spaced homologous leads (e.g., T5 and T6). Whether volume conducted, or
the result of interconnectivity, the second step of the regression approach of Wheeler et al.
then statistically controlled for shared variance between left and right homologous leads,
which is likely to be substantial.

5 The fact that the difference between these highly correlated sites is nonetheless predictive of state affect
and individual differences merits a brief comment. The asymmetry score reflects the difference between the
contribution of the activity of the left and right leadsthin subjects, whereas the correlations between sites reflect
the similarities of activity at each leatrosssubjects. It is thus the case that between-person differences in alpha
power at a given site are substantially larger than the within person differences between sites, but that the latter
nonetheless have some degree of predictive validity.
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Fig. 4. Correlations between Behavioral Activation Scale (BAS) scores and EEG asymmetry (left panels) and resid-
ualized power at constituent sites (right panels), for data under an averaged reference (AR) and computer-averaged
mastoids (CAM) reference. Data from subjects presenté&ben and Allen (2003a)

The results of this procedure produce what has become a fairly typical pattern: for each
significant correlation between tie— L difference score and a criterion, two significant
correlations emerge, approximately equal in magnitude to the original correlation, but op-
posite in sign to one another, at the constituent leads. Correlations at the right lead maintain
the sign of theR — L difference score, and correlations at the left lead reverse direction. For
exampleWheeler et al. (1993pund that the F4—F3 (In-transformed) asymmetry score cor-
related with positive affect 0.45, and that residualized In-transformed power at F4 correlated
0.44 and at F3 correlated0.49 with positive affect. SimilarlyiHarmon-Jones and Allen
(1998)found that the F4—F3 (In-transformed) asymmetry score correlated 0.48 with trait
anger, and that residualized In-transformed power at F4 and F3 correlated 0.45.46d
respectively, with trait anger. To illustrate more generally this pati&ég 4 presents corre-
lations between BAS scores and asymmetry scores (left panels) and residualized power at
constituent sites (right panels). Treating these correlations themselves data points, the ob-
tained values from residualized power at right leads correlated 0.94 with the values obtained
using the difference score, and the values from residualized power at left leads correlated
—0.88 with those obtained using the difference score. Additionally, the values obtained
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using residualized left values correlated.87 with those obtained using residualized right
values.

Thus, the procedure that was originally devised to examine the independent contributions
of each hemisphere would appear to distribute the variance relatively equally and in opposite
directions across the two hemispheres, which would be expected if activity at homologous
leads is extremely highly correlated, as is the case with homologous left and right lead power
(Table ). To demonstrate why such a pattern would be expected with such highly correlated
data, consider the impact on residualizing left hemisphere power on right hemisphere power.
The residualized scoré sig) for a left hemisphere lead.) is given by

Lyesig= L — 24 (2)

whereL is the predicted power at the left hemisphere lead given power at the right hemi-
sphere lead, determined by the raw score regression (prediction) formula:

A

L =a+b(R) 3

whereais the intercept andis the unstandardized regression coefficient. In the case where
L andRare nearly perfectly positively correlated (Seble ), with the distribution of each
having virtually identical means and standard deviations, the inteecefit approach 0,

and the regression coefficidmtvill approach oné, reducingEq. (3)to:

L~0+1(R) =R (4)

Substituting the results dgq. (4)for Lin Eq. (2) it is revealed that, wheh andR are
nearly perfectly correlated:

Lresa=L —L~L—-R (5)

Thus this residualization procedure produces residual values for left hemisphere leads that
will approach the valud. — R as the correlation between left and right leads approaches
1.0, provided that the unstandardized regression coefficient approaches 1 and the intercept
approaches 0. Similarly, by implementiis. (2)—(5)for right hemisphere residualized
(Reesid) and predictedR) scores, it will be the case that residual values for right hemisphere
leads willapproach the valug— L as the correlation between left and right leads approaches
1.0. Therefore, this procedure will make it appear that right hemisphere leads correlate with a
criterion variable in the same direction and approximate magnitude @&s-thk difference

score, and that left hemisphere leads correlate with a criterion variable in the opposite
direction but same approximate magnitude asRhe L difference score.

6 Empirically, it appears to be the case that the unstandardized regression weight is very close to one and
the intercept is very close to zero. Resting data for 34 subjects (@oan et al., 2001lwere used to predict
left hemisphere frontal activity from the homologous right hemisphere frontal activity. For the prediction of four
frontal sites (FP1, F7, F3, and FTC1), each from its homologous right hemisphere site (FP2, F8, F4, and FTC2),
across both LM and AR reference schemes (for a total of eight separate regressions), the median unstandardized
regression coefficient was 1.028 (range: 1.012-1.071) and the median intercep00&9 (range—0.098 to
0.031).
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2.2. Revised residualized power approach

More recentlyDavidson et al. (2000djave proposed an improved variant on the method
of Wheeler et al. (1993)one that does not include homologous lead power in the resid-
ualization calculations. This approach first residualizes the criterion variable on whole
head power, and then calculates correlations between the residualized criterion variable
and power at each individual sitBgvidson et al., 20003. 41;Davidson, 2002personal
communication). This method obviates the problem detailed above using the homologous
lead to residualize power at each site, but will produce a large set of correlations (one for
each scalp site) that are not tested formally in a model that can control for experiment-wise
alpha slippage. Such correlations are quite informative, but ultimately must be regarded as
descriptive. To adequately test the relationship between power at each site and the criterion
variable, an omnibus model is required. Although the precise model will depend on the
nature of the investigation, and the theory being tested, an alternative approach might be
for investigators to specify a hierarchical general linear model in testing the relationship
of left and right sites to criterion variables, as highlighted below. Such an approach might
limit the undesirable probabilistic artifacts involved in multiple statistical tests, optimizing
risk for both type 1 and type 2 errors in estimating both the impact of whole head power
and effects of interest. Further, such single model approaches may economize data analytic
effort and reporting.

2.3. Hierarchical general linear models

Hierarchical general linear models can simultaneously account for the multiple sources
of variance contributing to the relationship between cortical asymmetry and criterion vari-
ables. Such models can include both categorical and continuous predictors, and can be
constructed to test a variety of specific hypotheses of interest, including those related to
overall power, hemisphere, and even reference scheme, all in a single model. In fact, in-
teractions with reference scheme can be entered into such a model in order to determine
whether relationships between asymmetry and the criterion variable are dependent upon
reference scheme.

In constructing the model, some general principles may guide the investigator. First, the
model should be explicitly specified, and whenever possible should be an omnibus model
that can test all effects of interest at once. Second, the investigator should use theory to
guide the ordering of the main effects followed by the interactions of these main effects. In
most cases, main effects per se will not be of interest (e.g., they may reflect the contribution
of overall power to the prediction of the criterion variable, or differences in overall power
between anterior and posterior regions), but the interactions will be of interest. Interactions
of hemisphere and region in predicting the criterion variable, for example, would be found
if there are frontally-specific hemispheric differences in the contribution of left and right
leads to the prediction of the criterion variable. A higher-order interaction with reference
scheme would further indicate that the pattern of findings is reference-scheme dependent.

Of course, the use of theory and careful sensitivity to the possibility of spurious interaction
effects is particularly important as the complexity of interactions increases. As interaction
effects reach beyond third order, the probability of overfitting the observed data—essentially
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modeling meaningless residual variance—increases. While testing for most or all effects
of interest in an omnibus model is highly desirable, it is not advisable if doing so requires

the modeling of very complex (e.g., greater than fourth order) interactions. Thus a third

principle might be to reduce the potential for spurious findings and complex interactions

in the hierarchical linear model designed to test for specific contribution of hemisphere

by first running a simpler but conceptually related model using the asymmetry scores.

Then, following this simpler model, natural-log transformed power at constituent sites can

be entered for the relevant regions where the asymmetry score identified a relationship
between asymmetry and the criterion variable.

As anillustration, data fror@oan and Allen (2003&ye presented, the same data that were
used inFig. 4to illustrate the residualization approach. First, an omnibus hierarchical linear
model using asymmetry scores from eight regions across the scalp under both averaged
reference and computer averaged mastoids reference schemes were used to construct a
model predicting BAS scores. To code reference scheme, data from each reference scheme
were concatenated, and a contrast-coded variable was used to code for reference scheme
(cf. Aiken and West, 1991 The model first entered the main effect of reference scheme,
followed by the main effects of regions ordered according to theoretical interest and results
of previous studies. Sites entered first were frontal and anterior temporal sites, followed
by sites from central to parietal: F4-F3, F8-F7, FTC2-FTC1, T4-T3, C4-C3, T6-T5,
TCP2-TCP1, and P4-P3. Finally, interactions of each region with reference scheme were
entered to test for the reference-specific effects. In this model, only the main effect of
F4-F3 was significant in predicting BAS scord&1, 46) = 8.5, P < 0.01), with trends
for contributions from the main effects of F8—FF({, 46) = 3.6, P < 0.10) and C4-C3
(F(1,46) = 3.6, P < 0.10). Reference scheme did not interact with any effects in this
model.

Thus the focus of the subsequent analysis was to examine the contribution of left and
right hemisphere in the significant midfrontal region. In this hierarchical general linear
model, BAS scores were the dependent variable to be predicted by (1) whole head power;
(2) reference scheme and (3) natural log-transformed alpha power in the left (F3) and right
(F4) hemispheres. This model, with whole head power entered first, is akin to the procedure
described bypavidson et al. (20004 statistically partial out the effect of overall power in
predicting BAS score. In this model, main effects of each site were of interest. Interactions
with reference scheme were entered into the model in order to determine whether any
relationships between site and BAS scores were dependent upon reference Scheme.

The overall model was approached statistical significarf@®,64) = 1.94, P =
0.07, adjusted®? = 0.12). Results indicated a main effect of the right hemisphere at
F4 (F(1,54) = 9.61, P < 0.01,7% = 0.15) but not of the left hemisphere at FB({, 54) =
2.49, P = 0.12,7° = 0.04). No interactions with reference scheme were significant, in-
dicating that individual differences in right frontal activity were related to differences in
BAS scores, and that this main effect of the right hemisphere was not dependent upon
reference schemeig. 5 depicts specific left/right relationships with BAS scores for F4
and F3. To estimate regression lines for both F3 and F4 separately, two hierarchical gen-

7 Had the first model included additional regions of significance, such amodel could also include the interaction
between hemisphere (left, right) and region (e.g. mid-frontal and lateral-frontal).
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Fig. 5. Regression lines for left and right midfrontal (F3 and F4) In-transformed alpha power predicting BAS scores.
Theregressiorequationslepictedare:BAS = (5.12) x (Right) +37.41;BAS = (—1.98) x (Left) +36.658.

eral linear models were run, one each for F3 and F4. For these models, reference scheme,
whole head alpha power, and each site were entered such that (1) the effects of reference
scheme and whole head alpha power were each rentmfedethe b-coefficient for each

site was estimated, and (2) dependence upon both reference scheme and whole head power
could be estimated. Notably, neither model is, by itself, statistically significant, but it is
nevertheless useful to estimate such curves in the service of understanding the significant
effects reported above. Apparent using this method, but not the residualization approach,
is that the relationships between BAS and each hemisphere are not a mirror opposites, but
in fact BAS is robustly related to right hemisphere activity, and largely not related to left
hemisphere activity, a surprising result given the theoretical notions concerning the left
hemisphere and approach-related motivati@oan and Allen, 2003g;Davidson, 1992,

1998; Harmon-Jones and Allen, 1997

3. Data acquisition
3.1. How much raw data should be acquired?

Sufficient data are required to ensure that reliable estimates of EEG activity are derived.
Although the power spectrum derived from any single epoch via the FFT will reflect both
frequencies that are common across epochs as well as those idiosyncratic to any given
epoch, averaging together multiple spectra can allow those frequencies to emerge that are
presentin areasonably large proportion of epochsKied, Panel E), while mitigating the
influence of infrequent or irregular signalsynez, 1981)which might often be considered
noise. Thus an investigator, by averaging across epochs, makes the implicit assumption
that the frequencies that appear commonly across epochs are of interest, and epoch-specific
variations are of little interest. In the case of estimating trait asymmetry with the goal of
predicting psychological traits or psychopathology, this is clearly a reasonable assumption.
On the other hand, a recent investigation found that variability from epoch to epoch was
itself an important correlate of neuroticisidifinix and Kline, 2003.
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To reliably estimate EEG asymmetry at any given assessment session, investigators and
reviewers often suggest that 8 min of resting EEG asymmetry are necessary to obtain ade-
quate internal consistency reliability, as this was the number reported in the first psychome-
tric investigation of resting EEG alpha asymmetfpifarken et al., 1992 Substantially
fewer 1-min samples, however, also can produce acceptable estimates of internal consis-
tency (Tomarken et al., 1992and estimates based on even shorter time frames of 2 min
have proven similarly reliableJoan et al., 2001

Tomarken et al. (1992assessed the reliability of fewer than 8 min of data in a way
that confounded the length of recording with the number of discrete items included in the
calculation of coefficient alpha; i.e., they used the Spearman—Brown prophecy formula to
estimate the reliability for shorter recording periods, estimating alpha based on six asymme-
try values for 6 min of data, seven values for 7 min, and eight values for 8 min. To adequately
test whether fewer minutes of recording would produce estimates of internal consistency
comparable to those obtained with more minutes of recording, it would be required to keep
the number of values constant despite changes in the length of recorded data, as Cronbach’s
alpha will be higher given more minutes (items) for analysisrd and Novick, 1968
In a recent studyAllen et al., 2004, reliability estimates from 2, 4, 6, and 8 min of data
were compared. Specifically, the first 2, 4, and 6 min as well as all 8 min of recorded data
were divided into eight blocks each. Each block contained 2-s overlapping epochs that were
subjected to Fourier analysis as reviewed above. In each case, eight asymmetry values were
obtained, reflecting the asymmetry score averaged across 1/8 of the total time of recording
(15 s for the 2-min data, 30 s for 4-min data, 45 s for the 6-min data, and 60 s for the 8-min
data). These eight values were then treated as items on an eight-item scale to assess internal
consistency reliability.

Fig. 6 shows the results for frontal regions as a function of reference scheme. As can
be seen in the figure, the number of minutes of recording exerts relatively little influ-
ence on the estimate of internal consistency compared to the number of blocks included
in creating the estimate. Whether 2, 4, 6, or 8 min of data are utilized, very small dif-
ferences are apparent when all eight data segments are used as items for the purpose of
estimating internal consistency reliability. Reliability estimates begin to diverge, however,
when fewer segments are utilized to estimate reliability. Thus highly internally consistent
measures of asymmetry can be obtained with considerably fewer than the conventionally
accepted 8 min of recorded data, provided that internal consistency is estimated with a
sufficient number of constituent blocks. To highlight this point, consider a comparison
of two comparable data points froFig. 6. four 60-s blocks or eight 30-s blocks, which
correspond to identical timepoints from the EEG record. In all nine cases (3 reg®ns
reference schemes), the internal consistency of the latter is higher than the former, by
an average of 0.06 reliability units. It also appears to be the case that when fewer than
four blocks are used to estimate the reliability, the expected rank ordering of reliabilities
becomes less orderly, in some cases with longer recording blocks demonstrating lower
reliability than shorter blocks. Thus, regardless of the total length of data collected, at-
tempting to estimate reliability with insufficient blocks will lead to misleading estimates
of internal-consistency reliability. If investigators have fewer than 8 min of data available,
reliable estimates of asymmetry can likely be derived, but it is recommended that inves-
tigators report the internal consistency reliability of asymmetry scores based on the data
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available, detailing how many epochs were treated as items in the calculation of Cronbach’s
alpha.

3.2. What reference montage is preferred?

The choice of reference has been referred to as “perhaps the most divisive issue among
current EEG researcherdévidson et al., 2000®. 33). Although rational arguments have
been levied in favor of one or another reference scheme ttagemann et al., 2001; Reid
et al.,, 1998, it remains an empirical question which reference scheme has the greatest
predictive validity with respect to motivation, emotion, and psychopathology. Investigators
would ideally like measures of spectral power at a given site to reflect the activity at that
site, and not at the reference lead. For this purpose, investigators often search for a relatively
inactive reference, and have used linked ears or mastoids, averaged ears or mastoids, or an
average reference comprised of the average of activity at all recorded EEG sites. The average
reference, given a sufficiently large array of electrodes in a spherical arrangement around
the head, will nicely approximate an inactive reference, as activity generated from dipoles
will be revealed as positivity at one site and negativity at a site® Ifposite this site,
with the sum across sites thus approaching zero with a sufficiently representative sample
of the sphere. Smaller montages, and those that do not provide coverage approximating the
sphere, however, will have more residual activity in the average reference.

Especially troubling is the Cz reference, which has been utilized more often in the EEG
asymmetry literature than other reference montagesisaa and Allen, 2003for review).

The Cz reference has been criticized as potentially under- or over-estimating activity at the
target sitefdagemann et al., 2002Moreover, empirical comparisons of data from different
reference schemes have found Cz to be the least related to other reference schemes (e.g.,
Hagemann et al., 2001; Reid et al., 1998he fact that many studies have successfully
identified predicted relationships using the Cz reference suggests at least two non-mutually
exclusive possibilities: (1) significant results using the Cz reference reflect, in part, not only
the relationship of constructs with frontal asymmetry, but also with sources of variance
unigue to the Cz reference (e.g., overall alpha power); and/or, (2) asymmetry scores us-
ing the Cz reference may have more irrelevant variance (error or systematic) with respect
to asymmetry, and may therefore result—across studies—in inconsistencies in the pattern
of empirical relationships with motivation, emotion, and psychopathology. Distinguishing
between these possibilities will be facilitated if investigators report results from multiple
reference montages. Moreover, various reference schemes can be conceptualized as con-
tributing unique sources of error variance to any given analysis, providing the researcher
with semi-independent measures of EEG activity, with findings that are statistically inde-
pendent of reference scheme being considered the most generalizable, being less likely to
reflect only the reference-specific “method” variance Gampbell and Fiske, 19%9

3.3. Impedances in asymmetry research
It has been customary in EEG asymmetry research to strive to obtain low and symmetrical

impedances during subject preparation. Intuitively, this seems desirable, as one would wish
to have a strong noise-free signal by lowering impedance, and would like to guarantee that
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any observed alpha power asymmetries reflect an underlying asymmetry in activity, rather
than an asymmetry in impendence to recording the underlying signal. As pointed out by
Ferree et al. (2001however, contemporary high impedance amplifiers mitigate the impact
of scalp impedances on the recorded signal, as the loss in the observed signal due to scalp
impedances is directly related to the average impedance of the measurement and the refer-
ence electrode, and inversely related to the amplifier input impedance. Because amplifier
input impedances are typically on the order of tens (or even hundreds) of megaohms, and
scalp impedances on the order of a few kilohms, small changes in scalp impedance do not
appreciably impact the observed signal, as the magnitude of the amplifier input impedance
is at least1000 times greater than the scalp impedance.

The observed voltage for a given electrode E with a given reference electrode R is the
measured voltage difference between these electrodes;-oVRr. This differenceyg — VR,
is influenced by electrode impedari@eand reference impedangg and input impedance
Zin as follows Ferree et al., 200%p. 538):

zE+zR> (zE_zR) ( 1 )2
VE—Vr=W(2-—=—" )+ ve [ —/—=)+0(=— 6
. R D< Zin Zin Zin ()

whereVp is the actual differential-mode signde_true— VR _true) /2, andVc is the common-

mode signal(Ve_true — Vr_true)/2. The latter termVc results primarily 60 cycle (US)

or 50 cycle (Europe) ambient noise, and the extent to which it emerges is a function of
impedance mismatch. The former teif is primarily the signal of interest, resulting
from voltage potential differences between the two sites, but attenuated by the ratio of
the scalp impedances to the amplifier input impedance. Since the scalp impedances are
a tiny fraction of the size of the input impedance, even appreciable differences in scalp
site impedance will not measurably attenuate the voltage potential difference observed be-
tween the two sites. The final term in the equation is a residual term to account for other
sources in the differential amplifier circuit that influence the observed voltage potential
difference, the sum of which are negligibleefree, 2002personal communication). The
mathematical notatio® is standard for “order” in Taylor series, and simplifies the expres-
sion without appreciably altering the result obtained with the simplified equation involving
only the first two terms. In the full equation there are a series of higher order terms in-
volving powers of 1Z;,, which the termO(1/Zi,)? denotes. With a high input impedance

Zn, the impact of (1Zi,)? will be negligible, and the impact of higher powers approaches
zero.

Fig. 7depicts the impact of mismatched impedances under conditions likely to be encoun-
tered in a psychophysiological laboratory. The data depictétign7 show the observed
asymmetry score (IiRight) — In(Left)) as a function of amplifier input impedance, and
impedance at leftzs) and right &ignt) leads. Data in the left panel depict the impact of
mismatched left and right lead impedances with an input impedance of2l@hat of the
Neuroscan Synamps system, Neuroscan a Compumedics Company, El Paso, TX), and data
in the right panel depict the same with an input impedance of 2Qthat of the Grass
Model 12 Neurodata system, Grass Telefactor an Astro-Med Inc. Product Group, West
Warwick, Rl). Datawereobtainedoy solving Eq. (6) independentlyor left andright leads,
for impedances ranging from 0.2 to 1Q@kassuming a reference electrode impedance of
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Fig. 7. Asymmetry score (difference of natural log scores) as a function of amplifier input impedance, and
impedance at leftze) and right @ignt) leads. For both plots, reference electrode impedance is set@ 1k

The computed voltage at both left and right leads was squared to produce power units, and the difference of the
natural log transformed power values(@®ight) — In(Left)) was plotted on the vertical axis. Top two panels depict

the observed asymmetry score when the right lead’s true signal weddrger than the left, and the lower two
panels depict the asymmetry score when the right lead’s true signal wa¥ (abger than the left. Note that the

top two panels are on the same scale, and the bottom two panels share a different scale.

1 k2.8 The resultant values for left and right leads were then used to compute the asymmetry
score (IRight) — In(Left)) for all combinations of left and right impedances.

Two aspects ofFig. 7warrant comment. First, the overall impact of impedance mismatch
ranging from 0 to 10 R between left and right leads is negligible, and apparent only in the
sixth decimal place of the asymmetry score. Differences between hemispheres and between
groups of subjects, on the other hand, are readily apparent in the first decimal place (cf.
Henriques and Davidson, 1990, 1991; Reid et al., }J998ferences in left and right lead

8 Results remain essentially unchanged if reference impedance is higher thaadtke reference impedance
appears similarly in the equation for calculating observed left lead and observed right lead voltage.
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impedances are thus unlikely to spuriously create or mask veritable differences in left and
right alpha power. Second, the impact of the mismatch is further attenuated as a function
of the higher input impedance amplifier. Asymmetry scores vary.Byx710~¢ with the

10 M2 input impedance, and by ®x 10~° with the 20 M2 input impedance, when true
voltage differences are Ov. Variation would be even less with higher input impedances
(such as the 200 M input impedance of the Net Amps, Electrical Geodesics Inc., Eugene,
OR).

3.4. Dealing with ocular and muscular artifacts

EEG recordings may contain not only brain electrical activity, but non-cerebral contri-
butions to the observed signal, including artifactual contributions of the scalp muscles and
potentials generated by eye movements and bligkstfon, 1998; Picton et al., 2000
Although careful screening and rejection of data segments contaminated by the artifacts is
likely to remove many of the artifacts, it may be desirable to obtain an estimate of the extent
to which such artifacts may be influencing the results of an investigation.

3.4.1. Electrooculographic (EOG) influences

The eyes, being ion-filled imperfect spheres, carry a positive charge at the relatively
leptokurtotic cornea, and a negative charge at the relatively platykurtotic retina. Being
mobile, these charged spheres create electrical fields that are observed as signal in the case
of EOG recordings, or artifact in the case of EEG recordings. Moreover, the conductive
eyelid acts as a variable resistor as it slides across the cornea, momentarily distributing
the ocular potential across the scalp. Thus ocular movements and blinks can be observed
in scalp-recorded EEG, with the magnitude of the EOG signal decreasing as a function
of the distance from the eyes. Although a majority of the signal of ocular origin is in the
delta and theta rang&ésser et al., 1985; Hagemann and Naumann, )2@0dwer than
the 8-13 Hz alpha range of interest in EEG asymmetry research, some activity in the alpha
band will inevitably be present, some potentially of neural originlgfono and Lykken,
1981). The concern that activity of ocular origin may contaminate scalp-recorded EEG has
prompted investigators utilizing EEG asymmetry to often reject epochs containing blinks
or other ocular artifact. Moreover, the concern that the EOG signal may contain alpha-band
activity of neural origin has discouraged investigators from employing a simple correction
procedure that subtracts a portion of the time-domain EOG signal from the time-domain
EEG signal, for doing so might also subtract alpha activity of neural origin.

Hagemann and Naumann (200d3grefully examined the contribution of ocular sig-
nals to scalp-recorded EEG asymmetry scores. Reviewing the literatagemann and
Naumann (20013uggested that ocular artifacts are not likely to artifactually create or miti-
gate alpha-band asymmetries from homologous scalp leads, because: (1) power in the alpha
band that is observed in EOG recordings is predominantly neural in origin, thus making
it unlikely that ocular movements and blinks will appreciably alter scalp-recorded alpha
activity, and (2) eye-movements and blinks are propagated relatively symmetrically. The
symmetric propagation of vertical eye movements and blinks is apparent in the raw signal,
but even lateral eye movements will be reflected similarly in the power spectra of left and
right sites due to such movements creating similar magnitude but phase reversed deflec-
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tions; the FFT will produce similar power spectra but different phase spectra, with only the
power spectra of interest in EEG asymmetry research.

Assessing the contribution empiricalyjagemann and Naumann (2004ayind that alpha
asymmetry scores ({Right)—In(Left)) derived from 8 min of resting EEG were highly sim-
ilar when computed with versus without epochs containing ocular artifacts. The correlations
between asymmetry scores from a dataset thatincluded all epochs free of non-ocular artifacts
and the same dataset with ocular-contaminated epochs were greater than 0.82 for all re-
gions except the frontal pole, which was substantially lower. Effects of ocular-contaminated
epochs, however, were larger for single sites than for corresponding asymmetry scores, fur-
ther supporting the notion that ocular artifacts propagate symmetrically across most of the
scalp.

Hagemann and Naumann (20@bncluded that the control of ocular artifacts may thus be
unnecessary for correlational analyses involving alpha asymmetry scores, but that analyses
involving mean levels may be influenced by ocular artifacts. Although the data in support
of their conclusion is relatively strong—as the correlations are high between asymmetry
scores from data with versus without artifacts—it is worth noting two issues that were not
considered or assessed fully, and that remain to be investigated empirically. First, no rela-
tionships between alpha asymmetry and a criterion variable (e.g., BAS scof@sanfand
Allen, 2003a; Harmon-Jones and Allen, 1997; Sutton and Davidson ) 18&¢ investi-
gated. Although the high correlation between asymmetry scores obtained from data with
and without ocular artifacts would suggest that each would demonstrate similar correlations
to a criterion variable, it is possible that the variance that is not shared by the two sets of
asymmetry scores is differentially related to the criterion variable. Because the correlation
between the two sets of asymmetry scores is attenuated the most at frontal leads by the in-
clusion or exclusion of epochs with ocular artifacts, and because it is precisely these regions
that are of greatest interest with respect to the criterion variable, the possibility is amplified
that the two sets of scores may relate differentially to a criterion variable. The second issue
to consider derives from this possibility. Despite the careful analysidagfemann and
Naumann (2001)one cannot differentiate between two possibilities: (1) that the true brain
activity is invariant across epochs with and without ocular artifacts, but the presence of the
ocular activity influences the observed EEG recording, or (2) the asymmetry scores differ
because the true EEG activity differs as a function of whether blinks or eye movements are
occurring. Given that eye-blinks show predictable relationships to cognitive processing and
attention Stern et al., 1984 this latter possibility must be considered in earnest.

3.4.2. Facial electromyographic (EMG) activity

Scalp-recorded EEG alpha activity may artifactually reflect the contribution of EMG
activity (Cacioppo et al., 1990; Friedman and Thayer, 398lthough the vast majority
of the power in the EMG signal is faster than the alpha band, EMG activity has broad fre-
quency characteristics with some small proportion of activity evident in the alpha band. This
problem is potentially exaggerated by the fact that facial EMG asymmetries—sometimes
similar in direction to reported cortical EEG asymmetries—have been obseBaedd(
et al., 1997, although the consistent and robust finding to emerge from this literature is an
asymmetry characterized by greater left side activity in facial expressions in general, across
all specific emotions and elicitation procedures.
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Friedman and Thayer (199&xamined the potential magnitude of the EMG contribution
to EEG recordings with the use of a redundancy analysis, which can be used to account for
overlap between cortically derived alpha power and alpha power due to facial muscle activa-
tion. In their analysis, facial EMG accounted for 7% of the variance in cortical EEG activity,
while cortical EEG activity accounted for only 3% of the variance in facial EMG, suggesting
that facial EMG is likely to be responsible for a small but potentially important portion of
the variance in scalp-recorded EEG. This study did not, however, specifically address the
extent to which asymmetries in facial EMG activity were contributing to asymmetries in
scalp EEG.

Coan et al. (20014ssessed the influence of EMG on scalp recorded alpha during a di-
rected facial action task using two strategies. The first, a strategy used also by Davidson
and colleagues (cDavidson, 1988; Davidson et al., 20Q0mvolves assessing EMG fre-
guencies at scalp sites of interest. This approach extracts EMG frequencies (70-80Hz in
Davidson et al., 2000br 70—-90 Hz inCoan et al., 2001from the power spectrum at each
site involved in the EEG analysis. Becau3ean et al. (2001yvere analyzing EEG asym-
metry scores, EMG asymmetry scoregRight) — In(Left)) were computed on this EMG
frequency band—for all the same regions as were included in the EEG analysis. These
EMG range asymmetries were useathanging covariates a multivariate repeated mea-
sures analysis of covariance (MANCOVA), which assumes that the EMG covariate changes
within groups with the dependent variable across levels of the independent variable—in this
case the particular facial expression. This changing covariate approach then correlates the
change in the covariate with the change in the dependent variable and subsequently ana-
lyzes the residual variance in a standard MANOVA. Using this strateggn et al. (2001)
found that statistically adjusting for the EMG variance in this way did not change any of
the significant relationships between facial pose and EEG asymmetry.

The second strategy used Gyan et al. (2001)nvolved an examination of alpha fre-
guencies derived from bipolar EMG leads. This analysis was motivated by noting that
the previous method assumes that all frequencies of the EMG are equally likely to show
asymmetry effects that differ by the manipulation. But it is conceivable that EMG activ-
ity in the 70-90 Hz band may relate differently to a criterion variable than EMG activity
in the 8-13 Hz band, the band of particular interest. Thus whereas the first analysis strat-
egy examined EMG frequencies in EEG leads, the second examined alpha frequencies in
EMG leads. This second approach derived power spectra from bipolar EMG activity in the
frontalis and the temporalis muscle regions. Alpha power asymmetry scores derived from
these EMG leads were thus included as changing covariates the analyses. Because unlike
the first approach, where each region had its own covariate, this approach produced solely a
frontalis alpha asymmetry score and a temporalis asymmetry score, one way repeated mea-
sures MANCOVAs were conducted separately for each region (e.g., one for F4—F3, one for
F8-F7, etc.) since each region could not have its own changing covariate. Analyzing each
region separately, thus increasing the number of analyses conducted, actually provided a
more stringent test of whether the relationships between the manipulation and EEG asym-
metry were influenced by myogenic contributions, because the chances increased of finding
that the covariates rendered a previously significant effect nonsignificant. Statistically con-
trolling for the EMG variance in this way, however, did not change any of the significant
relationships between facial pose and EEG asymmetry.
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4. Interpretive issues

4.1. Alpha and activity

A guiding assumption underlying the interpretation of findings involving frontal EEG
alpha asymmetry is that greater alpha power is indicative of less cortical activity in broad
underlying regions (cfDavidson, 1988 Although there is good evidence to support this
assumption, one might question whether this relationship is ubiquitous.

It has been well documented that sensory input shows modality-specific blocking of alpha
activity at cortical regions involved in processing such input. With visual stimuli, blocking
of alpha over the occipital region occurs about 0.3 s after the presentation of the visual
stimulus Berger, 1932; Jasper and Cruickshank, 1937; Knott, 988 this latency has
been found to vary with intensity and duration of the stimulDeu{ckshank, 1937Durup
and Fessard, 19363,bBnd to diminish somewhat with a motor response related to the
stimulus Knott, 1938, 1939; Travis et al., 198'Recovery time from blocking is generally
about 1 s, but it too varies with stimulus intensity and duratrui{ckshank, 1937; Jasper
and Cruickshank, 1937; Motokawa and Tosiada, 1941

Similar but less dramatic effects are observed with other sensory modalities. Auditory
stimuli, for example, block occipital alpha less effectively than visual stimuli and with a
somewhat longer latencBérger, 1930; Gibbs etal., 1935; Travis etal., 198¢ther sensory
stimuli, such as tactile, cutaneous, padefger, 1931, 1932; Jasper and Cruickshank, 1937;
Livanov, 1940; Travis and Barber, 1938nd gustatoryKitamura, 1939 have been found
to block alpha, at least in their respective cortical areas.

Thus, sensory stimulation that should require active cortical processing leads to modality-
specific alpha blocking, a principle that might lead to the inference that diminished alpha
recorded over any cortical region signifies greater cortical activity. A test of this hypothesisin
regions other than primary sensory regions is hampered by the lack of clearly defined stimuli
to specifically engage those cortical regions in active processing, although several studies
have provided data quite consistent with the notion that greater alpha power is indicative of
less cortical activity in the underlying regions thought to subserve task performance (e.g.,
Davidson et al., 1990

A consideration of the genesis of the alpha rhythm might prove illuminative for the as-
sumption that diminished alpha recorded over any cortical region signifies greater cortical
activity. A series of studies by Andersen and colleag#exdérsen et al., 19679,lsug-
gest that thalamic rhythmicity drives cortical ensembles, the latter which comprise a large
portion of scalp-recorded EEG activihndersen et al. (1967@xamined spindles in ani-
mals anesthetized with barbiturates, making the inference that such spontaneous rhythmic
spindle activity is homologous with the human alpha rhythm. Several findings highlight the
basis of their conclusion that thalamic rhythmicity drives cortical rhythmicity, including:
(1) destruction or cooling of cortical regions leaves thalamic spindle activity unchanged
(Andersen et al., 196Fp(2) damage or removal of the thalamus abolished cortical spin-
dle activity (Andersen et al., 1967h(3) unilateral destruction of thalamic tissue resulted
in the disappearance of ipsilateral cortical spindle activindersen et al., 1967b(4)
synchronous cortical spindles were not observed in relatively closely spaced cortical re-
gions (those separated by 2 mm or more), but were observed over a much larger distance
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between a group of thalamic cells and the cortical area to which they projeatedrsen

et al.,, 1967a Thus Andersen and colleagues concluded that spontaneous cortical rhyth-
micity was “generated exclusively by thalamic neuronsihdersen et al., 1967Ip. 258).
Although cortical systems provide inputs to the thalamus that can disrupt the rhythmicity,
the thalamus, and particularly the reticularis nuclestgiade et al., 19§5appears to be
responsible for synchronizing cortical EEG activity.

Recent confirmation of a relationship between thalamic activity and scalp-recorded alpha
activity in humans derives from a positron emission tomography (PET) stzdgdn et al.,

1998. During approximately 30 min, EEG an&F]-2-fluoro-2-deoxyp-glucose (FDG)

PET recordings were obtained. Global alpha (8—13 Hz) power was then correlated with
glucose metabolism, and cortical alpha power was strongly and inversely related to glucose
metabolism in the thalamukdrson et al., 1998 This finding is consistent with the notion

that thalamic activity in response to sensory or cortical input will disrupt alpha rhythmicity.

Thus scalp recorded EEG alpha activity—in a very coarse sense both spatially and
temporally—is inversely related to thalamic activity. Global alpha power across electrodes
and across 30 min relates to thalamic metabolism. Ultimately, however, investigators would
wish to know whether EEG alpha at a given scalp lead is related to cortical activity in the
tissue beneath that lead, a question addresse@ook et al. (1998)Using H1°0 PET
imaging allowed them to examine activity in 2 min segments, with a total of eight such
segments per subject. EEG power was calculated for 4 Hz wide bins, starting at 0 Hz and
extending to 40 Hz, at 1 Hz intervals (e.g., 0-4, 1-5, 2-6, etc.). Cerebral perfusion under
each electrode was calculated, and then correlated with each of the EEG spectral bins, re-
sulting in a plot of correlations between EEG power and cerebral perfusion as a function
of frequency. Frequency range played a major role in the relationship of EEG power with
perfusion, such that lower frequencies (those bins with a center frequency below 8 Hz) had
a positive relationship to perfusion, middle frequencies (bins with center frequencies from
8 to 12 Hz) had a negative relationship, and upper frequency ranges (center frequency var-
ied depending on specific operationalization) had a positive relationsigipg]. Apparent
from the figure is that relative power shows a closer correspondence to underlying cortical
activity than does absolute power, which may reflect that the latter is confounded by vari-
ations in scalp thickness much more than the former. Additionally, although alpha power
is inversely related to underlying cortical activityp matter which of the montages was
used the relationship of beta power (13—30 Hz) to underlying activity varied substantially
as a function of recording montage, exhibiting either a positive or negative relationship
depending on the particular recording montage used.

Thus there is reasonable support for the assumption that greater alpha at a scalp lead
reflects less cortical activity in a broad region(s) contributing to electrical activity recorded
atthatlead. Recent data@bok et al. (19983uggest, however, that a tighter correspondence
between cortical activity and scalp-recorded EEG is possible with a reattribution technique
these authors have calledrdance although the correspondence in the alpha band is not
vastly improved using this cordance measure (see the lower paféd.o8 taken from
Cook et al., 1998 Whether asymmetry in reattributed power demonstrates relationships
with emotion and individual differences, however, remains an empirical question, but one
worth investigating given the tighter coupling of EEG to brain function that appears possible
using this technique (see alseuchter et al., 1994, 1999, 2002
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Fig. 8. Correlations between EEG power and PET perfusion values at tissue under the EEG scalp lead. Top panel
depicts absolute power, and lower panel depicts relative power (i.e., power in the 4-Hz wide bin divided by total
power across all spectral frequencies). “Ear reference” is a computer linked ears reference, “source derivation”
is that described bydjorth (1975)that weights immediate neighboring electrodes in the time domain prior to
frequency-domain transformation, and “reattributed power” is a weighting of power derived from bipolar channels
of nearest neighbor€Cpok et al., 1998 Statistical significance is indicated by horizontal lines representing the
magnitude at which a correlation coefficient attains significance: solid lin@ fer 0.05; large dashed line for

P = 0.01; fine dashed line foP = 0.001. FromCook et al. (1998)reprinted with permission from Elsevier.
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Worth noting fromCook et al. (1998)and as apparent iRig. 8, is that the inverse re-
lationship between cortical perfusion and EEG power is relatively constant throughout the
entire alpha band in these adult subjects. Thus although the 8-13 Hz definition of alpha is
somewhat arbitrary, the correspondence of activity in this range (and perhaps a bit of the
6—8 Hz portion of the upper Theta band) to underlying cortical activity at rest is relatively
uniform in adult subjects. This observation does not suggest a strong functional distinction
between smaller bandwidth divisions, such as upper or lower alpha, at rest in a psychi-
atrically and neurologically healthy population (although some investigators have made an
argument for the utility of subdividing the alpha band for specific tasks and applications,
e.g.,Klimesch et al., 199y

A final issue with respect to interpreting alpha and cortical activity concerns how to
conceptualize resting EEG data. Such resting data necessarily summarizes activity across
several minutes, which will collapse across many variations in brain and psychological state
during the recording period. Although investigators refer to such periods as resting periods,
one might alternatively think of EEG activity during these periods as task-related, with
individual differences in how subjects approach this “task” of resting for several minutes
underlying the observed individual differences in EEG activity. The resting state is rela-
tively uncontrolled, allowing for individual differences in mentation (broadly construed)
during the resting period to influence the measure§chwartz et al., 1976r a similar
phenomenon when depressed and nondepressed subjects pondered a typical day while facial
EMG was recorded).

4.2. Robustness or capitalization on chance: the impact of reference schemes, specific
sites, and other variations

Reviewing the literature (see Tables 1-4Gpnan and Allen, 2004this issue), one is
impressed by the fact that significant relationships involving frontal EEG asymmetry: (1)
derive from data analyzed under a variety of reference schemes, with different studies using
different reference montages; (2) appear to involve different specific frontal regions in dif-
ferent studies; and (3) sometimes involve different frequency cutpoints for operationalizing
alpha band activity. It is premature to know how best to interpret such a pattern of findings,
but these observations suggest at least three non-mutually exclusive possibilities.

First, for those who like to see glasses as half-empty, this could reflect that this research
field suffers—as all do to some degree—from significant inflation of the likelihood of Type
| error, with alpha inflation resulting from the poor control for multiple comparisons, com-
pounded by the many permutations of variables possible when recording from multiple
regions under multiple reference montages, with the possibility of different operationaliza-
tions of alpha-band activity. In the absence of strong theory to suggest that investigators
should find effects at one specific frontal region and not another, or under one reference
scheme and not another, investigators wisely examine multiple sites and reference schemes,
but the incumbent risk of this strategy is that the field as a whole may be inadequately pro-
tected against reporting spurious findings.

Second, for those who like to see glasses as half-full, the fact that relationships with
frontal EEG asymmetry appear with data from different reference schemes at different
times, and at different regions at different times, suggests that these observed variables are
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imperfect manifest representations of what should be considered a latent variable, i.e., func-
tional frontal brain asymmetry. This argument would imply that only by recording multiple
regions and under multiple reference schemes can one adequately assess an individual's
true score on the latent variable. By aggregating over multiple measures, one gains power
and reliability, thus enhancing the ability to find relationships between frontal brain asym-
metry and criterion variables. This argument further implies that the impact of these factors,
such as reference scheme and specific frontal region, should be tested explicitly in a statis-
tical model, such as those detailed previously in the section on hierarchical general linear
models. In the absence of such a model to protect from isolated chance findings appearing
significant, the field may indeed suffer from inflation of Type | statistical error.

The latent trait argument would of course predict that the manifest variables should all
show some modest correlations with the latent trait, and likely with one another. Although
this is true of data recorded under the average reference and the computer averaged mastoids
references, it is less true of data recorded using the Cz referkliageihann et al., 1998;

Reid et al., 1998 which shows much lower correspondence with data using the other
reference montages. It is worth noting, moreover, that by far the most common reference
scheme used in frontal EEG asymmetry research is the Cz referenceg@eand Allen,

2004 this issue), and that most studies do not employ multiple reference montages in their
analysis of the data.

The third possibility is that there exists some systematic relationship between measured or
unmeasured variables and asymmetry at specific sites or under specific reference schemes.
This line of reasoning suggests the differential engagement of various frontal systems as a
function of particular task demands, as afunction of factors in the experimental environment,
and as a function of various individual difference variables under study.

At present, itis difficult to assess the likelihood that such effects exist, as most studies do
not assess a range of variables and attempt to relate them to asymmetry at specific regions.
A notable exception comes from a recent studyidfer and Tomarken (2001)n which
manipulations of expected reward or punishment produced changes in mid-frontal EEG
asymmetry (that varied by sex), and manipulation of the required response produced changes
in central asymmetry. These results suggest that there may indeed be task variables that
will impact the specific region in which EEG alpha asymmetry effects are likely to appear.
Nonetheless, there are many other non-task variables that may impact the regional specificity
of EEG asymmetry effects, but such variables may not be known or assessed, thus making
it impossible to discern whether there exists a systematic cause underlying the appearance
of EEG asymmetry effects at some sites in some studies, and other sites in other studies.

4.3. Consistency and variability

Estimates of EEG alpha asymmetry are averages that summarize patterns of brain ac-
tivity across several minutes, either contiguous time segments in the case of resting EEG
asymmetry, or collapsed across numerous discrete but separated time segments in the case
of state-manipulated EEG asymmetry. Although it has been adequately demonstrated that
such estimates possess excellent internal consistency reliability Alem, et al., 2001;

Coan and Allen, 2003b; Coan et al., 2001; Reid et al., 1998; Tomarken et al), 11882
estimates of internal consistency are derived from several segments of data, each of which
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is an average reflecting the pattern of brain activity across many seconds of recorded data.
There is a sense in which frontal EEG alpha asymmetry derived from these segments of data
ignores variability on a finer temporal scale. Whether such variability will prove meaningful
is ultimately an empirical question, but the utility of explicitly examining such variability
appears promising. For exampldinnix and Kline (2004)examined the variance estimate
associated with the average FFT from aresting assessment. Subjects who show more second-
to-second variability in frontal EEG alpha asymmetry will have higher variance estimate
across the entire recording epobtinnix and Kline (2004 ¥ound that increased variability
of this sort was related to higher neuroticism. Thus a trait characterized by greater emotional
lability was found to be associated with more lability in frontal EEG asymmetry as well.
Another way of assessing the stability of frontal EEG asymmetry was first reported by
Baehr et al. (1998who computed the percentage of time that right alpha is greater than left
alpha at homologous leadBaehr et al. (1998jound that the percent—-time measure bet-
ter discriminated psychometrically-defined depressed subjects from nondepressed subjects
than the traditional asymmetry measure that averaged across the recording Albgiod.
et al. (2001)used the percent-time measure as well, finding that it produced comparable
findings to the traditional asymmetry score. Thus although it may be premature to suggest
that this metric has distinct advantages, the extant data suggest its promise and moreover
suggest that it would not result in the elimination of significant findings with the traditional
asymmetry score.

4.4. Keeping straight the states and the traits

Substantial data support the contention that frontal EEG asymmetry can serve as a rel-
atively stable individual difference variable, yet also show predictable state-related fluctu-
ations (se€Coan and Allen, 2004his issue). Evidence in support of the trait-like quality
of frontal EEG asymmetry derives from studies specifically examining stability over time.
Tomarken et al. (1992ssessed the psychometric properties of trait-like frontal EEG asym-
metries, finding that frontal EEG asymmetry demonstrated acceptable test-retest stability
(intra-class correlations ranging from 0.69 to 0.84 across 3 weeks). Similarigs et al.
(1997)found that frontal EEG asymmetry recorded at 3 months of age was highly correlated
with asymmetry at 3years & 0.66, P < 0.01). Similar figures come frotdagemann et al.
(2002) who found that across four different measurement occasions, 60% of the variance
in EEG asymmetry measures was due to individual differences in a temporally stable latent
trait.

To enhance the ability to identify trait-related variance, some studies have specifically
examined subjects who show the greatest cross-session consistencyfeegler et al.,

1993, reasoning that the strongest relationships to other traits should be shown by those who
are consistent on the measure of trait EEG asymmetnBg@h and Allen, 1971 Others

have averaged data across multiple sessions to mitigate occasion-specific fluctuations and
presumably derive a better estimate of the trait-related variance in EEG asymmetry (e.g.,
Sutton and Davidson, 1997

When attempting to account for the nonstable variance in frontal EEG asymmetry, three
sources must be considered: reliable changes from one session to the next, reliable and
systematic changes within session, and unreliability of measurement. Because frontal EEG
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asymmetry demonstrates high internal consistency reliability at any given assessment ses-
sion (Cronbach’s alphas typically above 0.B&jd et al., 199§ it is unlikely that attenuated
test-retest reliability of frontal EEG asymmetry is due to random measurement error. Rather,
a majority of the variance in EEG asymmetry can be accounted for reliable and systematic
sources of variationGoan and Allen, 2003due to:

(1) Stable trait consistencgicross multiple assessments, which is presumably indicative
of temperamental style and a tendency to respond in a characteristic way when con-
fronted with emotionally evocative situations. An individual’s trait level of frontal EEG
asymmetry represents a quality of that individual—a quality that the individual brings
to a variety of situations and contexts. This trait level is necessarily estimated, by av-
eraging across multiple occasions of measurement @ugton and Davidson, 1997,
Wheeler et al., 1993by modeling it as a latent trait (e.¢dagemann et al., 20020r by
accounting for it within the context of a generalizability analysis (as described below).

(2) Occasion-specifigariance refers to reliable variations in frontal asymmetry that char-
acterize the variation in resting EEG assessments across multiple sessions of measure-
ment. Such variation may reflect systematic but unmeasured sources such as current
mood, recent life events and/or factors in the testing situation.

(3) State-specifigariance refers to changes within a single assessment that characterize the
difference between two experimental conditions or between baseline resting levels and
an experimental condition. State-specific changes as conceptualized here are proximal
effects in response to specific experimental manipulations. Such manipulations should
be reversible and of relatively short duration.

These state-related fluctuations stand in contrast to the occasion-specific fluctuations, which
are assumed to characterize the individual throughout the measurement occasion, reflecting
the high internal consistency reliability estimates such measurement occasions typically
show. Occasion variance is hypothesized to reflect the effects of time- or context-limited
individual difference variables (e.g., mood on the day of assessment, recent orimminent life
events, daily hassles) or alternatively the interaction of the individual with the experimental
milieu in a manner that varies from assessment to assessment (e.g., effects of experimental
milieu or proceduresBlackhart et al. (2002)or experimenter effect&line et al. (2002).

Such effects would not be the result of purposeful state-related experimental manipula-
tions, but would rather represent an interaction of the subject with other experimentally
uncontrolled stimuli.

Most studies of trait frontal asymmetry are not designed to allow for the separation of trait
variance and occasion variance, as most studies entail only a single occasion of measurement
of resting frontal asymmetry. If occasion-specific fluctuations were not sizable, then a single
assessment of trait levels would prove sufficient. Recent evidéfaggemann et al., 2002
however, suggests that reliable occasion-specific fluctuations account for approximately
40% of reliable variance in resting frontal asymmetry, while the consistency across multiple
sessions, presumably reflecting a stable trait, accounts for approximately 60%. Further,
there may exist individual differences in the magnitude of occasion-specific fluctuations.
For exampleWheeler et al. (19933elected a subset of 26 from among 81 women (i.e.,
32% of the sample) who were classified as possessing stable asymmetry, meaning that 68%
of the sample was classified as having unstable asymmetry.
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4.4.1. Methods for assessing state, occasion, and trait variance

To reliably delineate sources of variance in frontal EEG asymmetry, an analytic strategy
for decomposing variance components is heeded. One such promising general strategy is
generalizability or “G” theory.

Generalizability theory@ronbach et al., 1979 2or “G-theory,” was developed for the pur-
pose of identifying thgeneralizabilityanddependabilityof different independent variables
thought to contribute to a measure’s score (gNocera et al., 2001 Thegeneralizability
of ameasure is analogous to more conventional estimates of reliability, such as the intraclass
correlation, whiledependabilityof a measure refers to a measure’s reliability across con-
texts. Generalizability and dependability estimates may be obtained for each independent
variable thought to contribute variance to a measure. In practice, an independent variable
with high dependability is one that contributes variance that is relatively independent of
other independent variables affecting the measure of interest. For example, an estimate of
the dependability of trait variance in frontal EEG asymmetry would allow one to assess
how independent and stable trait variance is from state manipulations and measurement
occasions. In addition to estimates of generalizability and dependability, actual variance
components may be estimated for each independent variable hypothesized to contribute
to an individual’s score at any one time, including variance components attributable to the
interaction of independent variables. G-theory is based fundamentally on an ANOVA model
in the estimation of variance components. A critical difference between G-theory analyses
and classical ANOVA models is that G-theory requires the computation of expected, as
opposed to observed variance components. Expected variance components are estimated
by using specific algorithms employed in very few statistical packages (e.g., SAS PROC
VARCOMP).

As applied to questions of state, occasion and trait variance in frontal EEG asymmetry,
such a model might be defined as follows (@f.Nocera et al., 2001

0f = 0f + 05 + 05 + 0 + 0f + 0ps + s

wherea§ is the total variance for a given variable, in this case frontal EEG asymmetry,

across all occasions and manipulatioq%,is the variance in frontal EEG asymmetry at-
tributable to individuals (here considered trait varianeg)is the variance in frontal EEG
asymmetry attributable to measurement occasiéris the variance in frontal EEG asym-
metry attributable to experimentally manipulated staté,si,s the variance in frontal EEG
asymmetry attributable to the interaction of trait and occasion variagge, the variance

in frontal EEG asymmetry attributable to the interaction of trait and state variaﬁscis

the variance in frontal EEG asymmetry attributable to the interaction of occasion and state
variance, and?2, is the variance in frontal EEG asymmetry attributable to the interaction
of trait, occasion and state variance (confounded with error of measurement).

G-theory thus provides variance component estimates (percent of variance accounted
for by each component), coefficients of generalizabiljt§)( as well as coefficients for
dependability$ or phi), for each independent variable of interest (in this case, trait, occasion
and state components). If, for example, trait variance in frontal EEG asymmetry shows high
dependability in addition to high generalizability, such a finding would bolster the likelihood
that it would prove useful as a liability indicator for risk for psychopathology, or index a



J.J.B. Allen et al./Biological Psychology 67 (2004) 183-218 213

trait-like affective style, as this finding would indicate that trait frontal EEG asymmetry
can be assessed reliably, and that trait frontal EEG asymmetry is independent of state
manipulations and occasion-related fluctuations.

Further, to date no researcher has examined the stability of state manipulations in frontal
EEG asymmetry, over time or otherwise. G-theory provides useful estimates of reliability
that mirror and extend approaches designed to understand intraindividual dynamics, such as
advocated by Mischel and colleagues (eShoda and Mischel, 1996; Shoda et al., 1994
Using Shoda and Michel's approach, such patterns of behavior are represeifted. as
then... probabilities that vary from individual to individual and that presumably reflect
an individual's underlying personality typ&éndoza-Denton et al., 20D 1Effects of this
type are also easily accommodated by a generalizability analysis, as they would be reflected
in Utzs' the trait by state interaction term. Thus, in addition to assessing the dependability of
trait variance across states and occasions, the dependability of state manipulations across
individuals is estimable, as is the dependability of occasion variance across individuals and
states.

Although no investigators have applied the model specified above to data collected across
multiple occasions of measureme@tan and Allen (2004, this issuéid assess the extent
to which state changes in frontal EEG asymmetry were reliably elicited across subjects,
and the extent to which trait levels of frontal EEG asymmetry were preserved across state
manipulations. The results indicated that trait-specific variance, state-specific variance, as
well as variance attributable to their interaction, each accounted for approximately 10% of
the total explained variance in frontal EEG asymmetry. Trait stability as measured ¢py the
coefficient (intraclass correlation) was estimated to be moderately high (0.47), whereas state
stability was extremely higtg(coefficient= 0.92). Although these results identify stability
and sizable contributions of both trait and state frontal EEG asymmetry, trait variance
as estimated from this single measurement occasion will necessarily include both stable
trait and occasion specific influences. Indeed, while the state variance in response to the
manipulation was highly stable, the trait variance was only moderately so. This may be due
to the influence of unmeasured but relevant occasion specific factors, which future efforts
might profitably explore.

A final note with respect to the G-theory approach concerns its flexibility to assess the
impact of a variety of other factors, such as the effect of reference scheme and specific frontal
region. By including terms to account for variance due to particular reference scheme, or to
the particular frontal region (e.g., F4—F3 versus F8—F7 versus FTC2-FTC1), the magnitude
of these sources of variance and their interactions with trait, occasion, and state variance
can be assessed. Similarly, estimates of the stability of the effects across these factors can
be quantitatively assessed.

5. Synopsis

Research on frontal EEG asymmetry and emotion now represents a substantial body of
literature. There are numerous methodological issues to which the field may have paid in-
sufficient attention, while at the same time paying potentially too much attention to other
factors. The field may have been too concerned with recording at least 8 min of data to ob-
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tain reliable estimates of asymmetry, overly concerned about the impact of blink artifacts,
and overly concerned with closely matching impedances at homologous leads. By contrast,
too little concern has generally been given to assessing the impact of reference scheme,
disentangling left from right hemisphere effects using appropriate statistical models, and
discerning whether specific regions are differentially involved in various tasks or as a func-
tion of individual differences. It remains to be determined whether the impact of myogenic
activity substantially influences findings involving EEG alpha asymmetry.

As one reviews the frontal EEG asymmetry and emotion literatGaa and Allen,
2003a; 2004, thisissliat is apparent that many different data analytic approaches have been
used, resulting in a collection of findings that converge despite rather dramatic differences
in: (1) the conditions under which data were recorded; (2) the manner in which data were
reduced; and (3) the manner in which data were subsequently analyzed. The optimist will
see this as a testament to the robustness of the underlying systems reflected in frontal EEG
asymmetry, and the curmudgeon will see this as representing considerable literature-wide
alpha slippage due to the many permutations of data reduction and analysis. A conservative
intermediate interpretation is that the larger enterprise of interpreting the data and theory
building will benefit from a more solid empirical foundation, one that will require that careful
attention be given to EEG data recording and analysis. The issues highlighted here may best
be regarded as fundamentals that may inform future efforts, to assist in the creation of a
more methodologically consistent and precise data base. Only with such a foundation can
researchers then explore the underlying functional, anatomical and neurochemical systems
that may be tapped by frontal EEG asymmetry.
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