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ABSTRACT

Digital filtering offers more to psychophysiologists than is commonly appreciated. An introduc-
tion is offered here to foster the explicit design and use of digital filters. Because of considerable
confusion in the literature about terminology important to both analog and digital filtering, basic
concepts are reviewed and clarified. Because some time series concepts are fundamental to digital
filtering, these are also presented. Examples of filters commonly used in psychophysiology are
given, and procedures are presented for the design and use of one type of digital filter. Properties of
some types of digital filters are described, and the relative advantages of simple analog and digital

filters are discussed.
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The processing of psychophysiological signals
nearly always includes some type of filtering. Most
often, this filtering is done by means of electronic
circuits that are built into the recording amplifiers
or electrically interposed between the amplifier and
the recording device such as the analog-to-digital
(A/D) converter of a laboratory computer. Such
electronic (or “analog™) filters may be contrasted
with an alternative category of filter that is applied
to the signal after it has been numerically recorded.
These digital filters have advantages that have been
discussed in the engineering literature, but these
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sources may not have been readily accessible to
psychophysiologists.

The purposes of the present report are to: a) dis-
cuss and clarify certain important points of con-
fusion in the literature regarding analog and digital
filtering; b) draw attention to digital filters and their
characteristics; and c) describe methods for effi-
ciently constructing, evaluating, and implementing
one type of digital filter in the context of comput-
erized processing of psychophysiological data. We
will not attempt an extensive mathematical treat-
ment of the topic of digital filters but will instead
emphasize practical information that is likely to be
of greater use to psychophysiologists.

In a chapter on signal extraction techniques for
event-related potential (ERP) research, Ruchkin
(1988) includes an extensive overview of digital fil-
tering methods for the advanced reader. Farwell,
Martinerie, Bashore, and Rapp (in press) assume
much of the background discussed in the present
tutorial and present a number of illustrations of a
slightly different type of digital filter than that dis-
cussed in detail here. These works provide valuable
follow-up to the introductory material in the pre-

sent paper.
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Filtering Basics

The simplest and most common electronic filters
used in psychophysiological recording are high-pass
and low-pass, which selectively attenuate low-fre-
quency and high-frequency components, respec-
tively. Such filters may be used as building blocks
to construct band-pass filters, which selectively at-
tenuate frequency components above and below a
range of interest. For example, a band-pass filter for
EMG recording might “pass” frequencies in the 10—
1000 Hz range. Another hybrid, the band-stop filter,
selectively attenuates frequency components within
a specified range. The most commonly used band-
stop filters attenuate a narrow range of frequencies
in the vicinity of power-line noise (50 or 60 Hz),
and are generally referred to as notch filters. For
purposes of clarity, the following discussion will be
primarily restricted to simple high-pass and low-
pass filters, although we will return to the others in
the discussion of digital filter design.

The degree to which a particular filter will pass
various frequencies is typically represented as its
gain function, where gain is the ratio of output am-

plitude to input amplitude as a function of fre-

quency (sometimes power is used instead of am-
plitude—see below). Figure 1 illustrates the gain
function for a low-pass filter. The range of frequen-
cies that a filter will pass without substantial atten-
uation is referred to as its pass band. The range of
frequencies in which little energy is passed is re-
ferred to as the stop band. The range of frequencies
in which gain is intermediate is referred to as the
transition band, approximately 13-37 Hz in Figure
1. Whether analog or digital, more complex filters
tend to have narrower transition bands, which may
be required in situations where the signal of interest
and the noise or artifact to be rejected contain near-
ly adjacent frequency components.
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Figure 1. The gain function of a filter is divided into
the pass band, transition band, and stop band. The gain
function shown is for a low-pass filter.
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The wide variety of ways in which transition
bands are characterized in the psychophysiology lit-
erature is one of the more confusing aspects of fil-
tering. Typically, some specific frequency within
the transition band is reported as the “cutoff” or
“corner” frequency, f.. The rule for determining f,
varies across sources and even across polygraph
manufacturers. The other feature of transition
bands typically reported is the “roll-off” rate, usu-
ally expressed in dB per unit of change in frequency.
This is unambiguous in the abstract but somewhat
inconsistent in practice, because sources vary in
their choice of unit of frequency—usually octave (a
doubling or halving of frequency) or decade (a ten-
fold change in frequency). Thus, a 6dB/octave filter
has a much narrower transition band (steeper roll-
off) than a 6dB/decade filter, though both could be
described as having a “6dB roll-off.”

The inconsistencies in definition of cutoff fre-
quency are problematic and warrant extended dis-
cussion. In the electronic engineering literature (e.g.,
Ludeman, 1986; Malmstadt, Enke, & Crouch, 1974),
f, is defined fairly consistently as the half-power fre-
quency—that frequency within the transition band
where the gain (ratio of output power to input power)
is .5. In decibels, a gain of .5 equates to 10 log,q (.5)
= —3dB. Thus, f_ is often referred to as the fre-
quency at which the gain is “3dB down.” Every 3dB
decrease is a further halving of the power.

Somg standard sources in the psychophysiology
literature also define f_as the half-power frequency
(e.g., Ruchkin & Glaser, 1978). However, some
sources treat f, as the half-amplitude frequency,
which is not the half-power frequency. (Power and
amplitude are related but not identical measures of
the magnitude of a signal. The relationship between
these measures is discussed in detail below.) For
example, Douglas-Young (1981) defines the cutoff
frequency as “that point on-the response curve
where the amplitude response has decreased to 'z
of its original value” (p. 137). The manual for a
widely used polygraph (Grass Model 12 Neurodata)
also uses half-amplitude to define its cutoff fre-
quencies (Grass Instrument Co., 1985). Thus, al-
though reliance on the half-amplitude criterion is
less standard, it is not uncommon. In fact, it will
be quite useful in the design of digital filters by the
method described below.

The confusion and inconsistency in the litera-
ture is abetted by the numerical relationship of .707
and .5 (the latter being the square of the former)
and the common treatment of power as related to
the square of amplitude (power = voltage?/resist-
ance; resistance is implicitly set to 1.0—i.e., ig-
nored—in most discussions of these issues). At the
frequency at which gain in power is .5, gain in am-
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plitude is \/.5 = .707. This half-power frequency
is the definition of f, employed in the familiar equa-
tion for a simple resistor-capacitor circuit, where R
(resistance in ohms) - C (capacitance in farads) =
TC (time constant in seconds). Thus, TC = 1/(2#f,)
= .159/f, or f_ = .159/TC. This choice of emphasis
on gain in terms of output/input power versus out-
put/input amplitude is essential for precisely com-
municating the characteristics of a filter. For a poly-
graph with filter settings labeled on the basis of half-
amplitude, using those settings in the TC = .159/
f. equation will produce an incorrect value for the
time constant.

There is considerable confusion among psycho-
physiologists on this point, perhaps because of prag-
matic but inconsistent nomenclature on poly-
graphs. Thus, for example, on the Grass Model 12
the filter settings refer to the half-amplitude fre-
quencies (Grass Instrument Co., 1985), not the half-
power frequencies. In fact, Grass Instruments told
us that they have never determined the time con-
stants associated with the various filter settings on
the Model 12 (Glenn Spohr, personal communi-
cation, December 15, 1988). The graph of gain func-
tions associated with the half-amplitude filter set-
tings for the 12A5 amplifiers in the Model 12 man-
ual indicates that the “.01 Hz” setting has a half-
power gain at approximately .017 Hz, which would
mean a time constant of .159/.017 = 9.4 s. In con-
trast, for the Grass Model 6 the frequency settings
on the 6A5 amplifier refer to the point at which the
amplitude gain is .8. Its “*.37, “1”, and “5” settings
actually provide time constants of approximately
.4, .12, and .05 s (Grass Instrument Co., 1968) and
thus power-defined cutoff frequencies of .4, 1.3, and
3.2 Hz. The 7P122 amplifier of the Grass Model 7
polygraph has settings labeled “TC .8” and “TC.17,
providing half-amplitude frequencies of .04 and .4
Hz (Grass Instrument Co., 1973). However, Grass
told us that these settings provide time constants
of 2.2 and .25 s, respectively, implying power-de-
fined cutoff frequencies of .07 and .64 Hz.

Equipment from some other manufacturers ap-

pears to use the half-power nomenclature. Settings
of “Hi Freq. Response” on the Beckman 411 am-
plifier refer to f; defined in terms of power. The
Beckman 9853 Voltage/Pulse/Pressure coupler and
the Nihon Kohden Neurofax polygraph have set-
tings that are explicitly labeled in both “TC” and
“Hz”, with values indicating that the “Hz” settings
refer to power-defined f_ (e.g., both devices have a
setting labeled both TC=1.0 and Hz=.16). Coul-
bourn labels its filters with the f, only; our empirical
tests indicate that the labels on their S75-01 Bioam-
plifier with Filters also refer to power-defined f..
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The characterization of a filter in terms of the
dB roll-off in its transition band was noted above,
Confusion similar to that for f, can now be dis-
cussed. As an alternative to gain as a simple ratio
of output to input typically ranging from 0.0-1.0,
a parallel way to characterize the cutoff frequency
of a filter is as the frequency that alters gain by a
certain number of decibels (dB), with negative val-
ues meaning a gain less than one. Thus, dB, a func-
tion of the log of the ratio of output to input values,
is also a source of some confusion, because it may
be computed on the basis of amplitude or power
values. Decibels are usually expressed in terms of
amplitude, computed as 20 log,o (Vou/Vin), but this
is equivalent to 10 log,q (Pou/Pin), With V = voltage
and P = power. The —3dB frequency is the fre-
quency at which gain is .707 amplitude = .5 power
= f,. Again, however, because polygraph filter spec-
ifications are instead often expressed in terms of
the —6dB frequency (e.g., Grass Model 12), which
is the half-amplitude frequency, confusion can re-
sult when trying to describe a filter in terms of fre-
quency and dB.

We believe that this confusion about the basis
for specifying f, and about the relationships among
f,, time constant, gain, dB, power, and amplitude
is pervasive in the psychophysiology literature. Be-
cause half-power and half-amplitude standards
both appear to be well established, we do not pro-
pose that only one be used. However, it is essential
to state which standard was used when reporting
f,, and it is essential to exercise care in deriving
time constant values from the f stated for a par-
ticular polygraph, coupler, or filtering device. Al-
though these imperatives follow primarily from
confusion in the specification of analog filters, they
apply to digital filters equally well.

Digital Filters: Background

Having reviewed and clarified some general
principles and issues in filtering, we now address
digital filtering more specifically. The term “digital
filter’” may be applied to a wide range of techniques
that have in common only the fact that they are
mathematical procedures that are applied to dis-
crete numeric representations of continuous wave-
forms to selectively attenuate certain frequencies.

Psychophysiologists using a wide range of phys-
iological measures frequently work with such rep-
resentations, examples of which include the sam-
pled voltage between two EMG electrodes or be-
tween a scalp EEG electrode and its reference, the
circumference of the chest during respiration, and
the serum concentration of corticosterone. Each of
these parameters varies continuously over time and
may be recorded numerically at equal intervals,
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yielding a time series of observations of the form:
xl' xl«rp, xt+2p’ XnSp’ ..

The subscripts refer to the time at which the as-
sociated X is observed, such that t is the time at
which recording began and p is the sampling period
(the time between adjacent samples). Event series
such as heart periods can be converted to time series
with a constant sampling period (Cheung & Porges,
1977; Graham, 1978; Miller, 1986). A time series
may be plotted to represent the original waveform,
as illustrated in Figure 2. Several texts, including
Bloomfield (1976), Brillinger (1975), Gottman
(1981), and Jenkins and Watts (1968) provide de-
tailed mathematical treatments of time series and
their analysis. The following sections on aliasing
and representation of time series in the frequency
domain address two specific issues in time series
analysis that are especially relevant to digital fil-
tering of psychophysiological data.

Aliasing. In order for a time series to represent
a continuous waveform adequately, the sampling
rate (f,, the inverse of the sampling period) must
be at least twice the fastest frequency present in the
original waveform. This requirement follows from
the fact that only if samples are obtained at least
twice per cycle can a discrete time series accurately
represent the frequency of a sine wave. This axiom
is referred to as Nyquist’s rule, and one-half the
sampling frequency is referred to as the Nyquist
frequency. If the rule is violated, the resulting dig-
itized waveform may contain low-frequency com-
ponents not present in the original data. This phe-
nomenon is known as aliasing. It is important to
note that Nyquist’s rule requires sampling at twice
the fastest frequency present in the original wave-
form, which may be higher than the fastest fre-
quency in which the investigator is interested.

Because of possible errors in estimating the high-
est frequencies in real-world data and possible noise
introduced by amplifiers and A/D converters, it is
commonly suggested (e.g., Attinger, Anne, &
McDonald, 1966; Coles, Gratton, Kramer, & Mill-
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Figure 2. A continuous waveform representation of an
electromyographic response is shown (upper panel) along
with its digital representation (lower panel).
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er, 1986) that sample rate be as much as 5-10X
higher than the Nyquist rule suggests. On the other
hand, when it is believed that the noise power in-
troduced . at high frequencies is minimal, a more
convenient sample rate is typically used and the
resulting aliased noise ignored. A second situation
in which the Nyquist rule can sometimes be vio-
lated is when there is a single high-frequency noise
source (e.g., power-line noise) and it is possible to
set the sampling period to an exact multiple of the
period of that noise source. By thus sampling the
noise at the same phase of its cycle with every sam-
ple, periodic contributions of the noise to the sam-
pled waveform are removed. However, DC distor-
tion as large as /2 the amplitude of the noise may
still be present. Considerations related to Nyquist’s
rule and avoidance of aliasing are important in se-

_lecting parameters for digital data acquisition and

filtering. A more precise treatment of aliasing is giv-
en in Appendix A. )

Representing waveforms in the frequency domain.
A time series-that indicates voltage or some other
parameter as a function of time is said to be a rep-
resentation “in the time domain.” An alternative
representation of the same information is based on
the principle (Fourier’s theorem) that any wave-
form that is stationary (i.e., from which long-term
DC shifts have been removed and in which the
underlying frequency components do not change
over time) may be represented as the sum of a set
of sinusoidal waveforms, each of a different fre-
quency and having an associated amplitude and
phase angle. This principle is the basis of Fourier
analysis, which yields an indication of the ampli-
tudes and phases of the constituent sinusoids as a
function of frequency. This representation of a sig-
nal is said to be “in the frequency domain.” A direct
Fourier transform converts a digitally represented
signal from the time domain to the frequency do-
main; an inverse Fourier transform does the con-
verse.

The requirement of stationarity is important for
this equivalence, and real-world psychophysiolog-
ical data will often violate it. Nevertheless, the in-
terchangeability of time-domain and frequency-do-
main representations of a given waveform bears
emphasis. Consider a set of j sine waves, each char-
acterized by a frequency, an amplitude, and a phase.
Frequency and amplitude for a given sine wave are
constant. At some arbitrary time, the different sine
waves may be at different points in their cycles (see
Figure 3, Panels a, b, and c¢). Summing across the
set of sine waves produces a single composite wave-
form in which the constituents may be difficult to
identify, depending on their frequencies, ampli-
tudes, and phase angles (Figure 3, Panel d). One

[ —
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e) Discrete Time Domain Representation

Figure 3. A recorded signal may be made up of mul-
tiple frequencies (Panels a, b, and c), which may be dif-
ficult to recognize when combined (Panel d). The signal
may be represented in the time domain by a discrete time
series (Panel e). The signal must be sampled at least twice
as fast as the fastest constituent frequency (Panel c).

could digitize the composite waveform, describing
it as a single vector of values arranged in time (plot-
ted in Figure 3, Panel e). Alternatively, one could
describe it with amplitude and phase vectors (spec-
tra)-arranged in order by frequency (plotted in Fig-
ure 4, Panels a and b). Either description—in the
time domain or in the frequency domain—com-
pletely specifies the raw phenomenon illustrated in
the composite waveform. One description may be
more tractable for a particular type of analysis or
more intuitively appealing for a particular type of
question, but exactly the same information is avail-
able in the two representations. Appendix A details
the computational steps for the direct and inverse

a) Amplitude Spectrum

frequency (Hz) —

b) Phase Spectrum

frequency (Hz) -
Figure 4. The signal shown in Figure 3 may be rep-
d in the fr y domain by its amplitude and
phase spectra. '
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Fourier transforms; that is, for shuttling between
time- and frequency-domain representations.

Digital Filters: Classification and Implementation

It was noted earlier that a wide range of math-
ematical procedures applied to time series may be
considered digital filters. If one simply requires that
the procedure selectively attenuate certain frequen-
cies, then in a general sense implicit digital filters
are already widely used in psychophysiology. For
example, the calculation of the mean of a time series
may be construed as an implicit digital filter, spe-
cifically one that attenuates all frequencies except
0 Hz (DC). Alternatively, computation of the var-
iance of the series removes the DC component
while retaining (and combining) all other frequen-
cies. Although these standard descriptive proce-
dures may be construed as types of digital filters,
we will restrict our presentation to those procedures
that yield a time series (one from which certain
frequencies have been removed) rather than a single
value such as the mean.

In one broad classification of digital filters, each
filtered point is defined as a weighted or unweighted
average of some number of input data points. “Fil-
tering” consists of replacing each input data value
with the sum of the cross-products of the weights
and the input data points, as follows:

J
Y= 2 Wi X )

=)
where W is the series of 2j+ 1 weights (subscripted
—j to +j), X is the input time series, and Y is the
filtered time series. The number of weights, the val-
ues of those weights, and the time-domain rela-
tionship (i.e., the lag) between the data value re-
placed and the data values used in the cross-mul-
tiplication determine the gain function of the filter.
Note that although there are 2j+1 weights, the
weighting sequence is symmetric about an unpaired
center weight Wy (i.e., W, = W_,). The cross-mul-
tiplication and summing procedure is referred to as
convolution. .

An alternative approach to digital filtering de-
fines each filtered point as a function of the current
input point and one or more prior filtered points.
The general form of such a filter is:

]
Y= X, + 2 Wit Y (@)

=1
where X and Y are defined as above, and W is the

series of weights applied to prior filtered points.

The distinction between these approaches is fre-
quently referred to as the filter’s impulse response.
Filters that define output points solely on the basis
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of input points are said to have finite impulse re-
sponse (FIR), because the effect of a single aberrant
input point (an “impulse”) disappears after a finite
amount of time; namely, after the last filtered point
that includes the aberrant unfiltered point in its def-
inition. In contrast, filters that define each filtered
point in part based on prior filtered points have
infinite impulse response (1IR), because the effect of
a single aberrant point will propagate ad infinitum.
“Nonrecursive” and “recursive” are synonymous
adjectives describing digital filters with finite im-
pulse response and infinite impulse response, re-
spectively.

IIR digital filters represent something of a hybrid
between analog and FIR digital filters and share
characteristics of both. Their advantages and dis-
advantages will be discussed below, where analog
and digital filters are compared. However, a thor-
ough discussion of IIR filters is beyond the scope
of the present paper (see Ackroyd, 1973, for such
a discussion), and the following presentation will
be restricted to the FIR variety unless otherwise
specified.

FIR Filters in Psychophysiology

In the psychophysiology literature, a variety of
FIR filters have been described, particularly for
smoothing (i.e., removing high-frequency compo-
nents from) time series. We consider several of
these below, and then present a general approach
to filter design and evaluation that is based on spec-
tral analysis.

Smoothing of time series data is often accom-
plished by redefining each point in the original time
series as the simple average of itself and a sym-
metric number of additional points before and after
it. This filter is frequently referred to as a moving-
average filter, reflecting the fact that computation
of the average is repeated to define each filtered
point. Additionally, this type of filter may be re-
ferred to as a “boxcar” filter, reflecting the shape
of the weights plotted as a function of lag relative
to the output point. Moving-average filters vary
only in the number of data points averaged togeth-
er. What gain function this translates into is a func-
tion of the number of data points and the sample
rate. Ruchkin and Glaser (1978; Glaser & Ruchkin,
1976; Ruchkin, 1988) discuss equal-weight filters in
detail and provide an equation for their gain. Al-
though that discussion targets digital signal pro-
cessing for ERP research, it applies more generally
to digital filtering of any psychophysiological data.

A particular advantage of equal-weight moving-
average filters is the rapidity with which each fil-
tered point can be computed. In general for FIR
filters with j weights, computation of each filtered
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point requires j multiplications and j— | additions.
But if the weights are equal, one can instead do j— 1
additions and then a single division by j. The latter
computations will always be faster. This speed con-
sideration may be particularly important if the filter
is to be implemented on-line or with computer
hardware lacking in floating-point support.

A variation on the simple moving-average filter
is one in which each filtered point is a differentially
weighted average of the corresponding and adjacent
input points. In perhaps the most common such
filter, the weight series is (.25, .50, .25} and each
filtered point X, is therefore (.25:X,_;) + (.5-X,) +
(.25X,.1)- Bloomfield (1976) refers to application
of this filter as hanning, and Glaser and Ruchkin
(1976) describe its use in psychophysiology. Al-
though computationally not as fast as a boxcar filter
with 3 weights, approximate division of integers by
2 or 4 is rapidly accomplished on a digital computer
by shifting binary digits to the right 1 or 2 places,
respectively, and therefore does not depend on
floating-point arithmetic.

The application to psychophysiological data of
a more complex moving-average filter with unequal
weights is described by Porges (1985). The deri-
vation of Porges’s approach is based on polynomial
regression of overlapping segments of the time se-
ries on a variable representing time (Kendall, 1976;
Hamming, 1989). The filter output is the predicted
value of the time series at the midpoint of each
segment. Both increasing the width of the filter and
limiting the order of the regression polynomial to
a low degree reduce the extent to which predicted
values can oscillate at high frequencies; the moving
polynomial filter thus functions as a low-pass filter.
Despite its basis in regression, redundant calcula-
tions permit moving-polynomial filters to be im-
plemented as moving-average filters with unequal
weights (Hamming, 1989; Kendall, 1976; Porges,
1985).

Porges and his collaborators (e.g., Linnemeyer
& Porges, 1986; McCabe, Yongue, Ackles, &
Porges, 1985; Yongue et al., 1982) have used cubic
moving polynomial filters with 15-51 weights to
estimate the vagal contribution to heart rate vari-
ability (i.e., vagal tone). When used for this purpose,
the filtered time series is subtracted from the orig-
inal time series, yielding a second filtered time se-
ries with the low frequencies rather than the high
frequencies attenuated. This subtraction procedure
can be applied after any of the above low-pass
(smoothing) filters to effectively convert them to
high-pass filters.

Compared to the simpler equal-weight and {.25,
.50, .25) filters described above, complex FIR filters
can require much more time for computation. Al-
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though this may not be an issue if the filtering will
be done off-line, depending on sample rate and
available computational power, such filters can eas-
ily overwhelm typical laboratory minicomputers
and microcomputers in on-line applications. How-
ever, even complex symmetric unequal-weight fil-
ters allow some speed-up, relative to a direct im-
plementation of the definition: one can sum each
pair of observations at equal distance from the mid-
point and then multiply by the weight, cutting the
number of multiplications in half.-

Although moving-average filters with both equal
and unequal weights are frequently used in data
reduction of time series, their frequency character-
istics are not generally reported and may not be
generally recognized. Using frequency-domain
methods described in the next section and Appen-
dix B, the gain function for moving-average filters
having any set of symmetric weights may be com-
puted. '

In addition to the explicit filtering and smooth-
ing applications described above, a wide range of
other procedures common in psychophysiology can
be understood within an FIR framework. To cal-
culate the mean of N points, such as for determin-
ing baseline levels, one employs a set of N weights,
each with value 1/N. As noted earlier, this filter
attenuates all but 0 Hz (DC). As a noise-reduction
strategy, occasionally one chooses to remove an er-
rant point and replace it with the average of its
neighbors. Such a procedure can be considered the
application of a filter consisting of the weights {.5,
0, .5} applied symmetrically around the errant
point.

Particularly interesting are FIR filtering methods
used in template-matching algorithms. The “tem-
plate” can be seen simply as a set of weights with
a particular configuration of values, and the weights
may not be symmetric. The basis for selecting
weights may differ greatly across applications, but
in general it will reflect a specific notion the inves-
tigator has about the signal being sought. For ex-
ample, if the template (the set of weights) is simply
a 10-Hz sine wave, then cross-multiplication of that
template with raw EEG will constitute an alpha
band-pass filter. One might search EEG or EOG for
blinks by establishing a filter template with weights
that outline a blink. The Woody (1967) filter tech-
nique used for latency correction of event-related
potentials uses as its template a portion of the pre-
correction waveform for a given subject; i.e., the
template is customized for each subject. A simpler,
common variation on the Woody technique em-
ploys a half sine-wave cycle or a half triangular-

wave cycle as the template. In all of these examples,
one slides the template along the data, cross-mul-
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tiplies, and notes the latency of maximum cross-
product as the likely latency of the signal for which
one is filtering. These examples represent additional
ways in which implicit digital filters are already
widely used in psychophysiology.

Design and Evaluation of Digital Filters
in the Frequency Domain

All of the FIR filters described above involve
cross-multiplying a time series with a symmetric
weight series (which may itself be considered a spe-
cial-purpose time series), yielding a filtered time
series. As described above, a time series can be rep-
resented in the frequency domain rather than the
time domain. Representation of the original time
series and the weight series in the frequency domain
(see Appendix A) permits insights that lead to a
general approach to design and evaluation of digital
filters. Specifically, the amplitude spectrum of a fil-
tered time series is equal to the amplitude spectrum
of the original time series, multiplied frequency-by-
frequency by the cosine component (A in Equation
A.1 of Appendix A) of the weight series. Moreover,
the power spectrum of the new time series is equal
to the power spectrum of the original time series,
multiplied frequency-by-frequency by the squared
cosine component of the weight series. These prop-
erties are fundamental to the construction of FIR
filters using Fourier transform methods.

The specific steps for constructing such filters.

have been described by Gold and Rader (1969; see
also Ackroyd, 1973; Oppenheim & Schafer, 1975;
Ruchkin, 1988), and software implementing the
steps is available (e.g., Cook, 1981). Briefly, the
technique involves four steps: First, the filter’s ideal
gain function is specified. Second, the inverse Four-
ier transform is applied to the gain function to ob-
tain the initial set of weights. Note that this is a
simple transformation from the frequency domain
to the time domain, as described above. The gain
function in the former becomes the set of weights
in the latter. Third, it is usually desirable to reduce
the number of weights and to taper the weights in
order to balance requirements related to transition
bandwidth, computational limits, maximum filter
width, and “ripple” (the degree to which the gain
function varies around unity in the pass band and
around zero in the stop band). Finally, the reduced
filter is evaluated and the process repeated until an
acceptable filter is obtained. These steps are de-
scribed in detail in Appendix B. It is assumed that
the investigator has already made decisions about
type of filter (high-pass, low-pass, etc.) and half-
amplitude frequency or frequencies.

A related approach to digital filtering is also
based on frequency-domain representation. This al-
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ternative approach requires three steps: First, a di-
rect Fourier transform is used to transform the orig-
inal time series to the frequency domain. Second,
those elements of the transform that correspond to
frequencies to be eliminated are set to zero. Third,
an inverse Fourier transform recreates the original
time series, minus those frequencies for which the
direct transform was set to zero. Although this ap-
proach follows in a straightforward manner from
the earlier discussion of frequency- and time-
domain representations, it has some limitations.
Specifically, it requires that filtering be delayed long
enough to acquire a time series large enough for
spectral analysis. This may present difficulties if fil-
tered data are required in real time, such as for
biofeedback. Secondly, if the signal is not stationary
(i.e., does not have consistent mean and frequency
components) over the epoch for which the Fourier
transform is calculated, artifactual high-frequency
noise can result (Attinger et al., 1966). Finally, dis-
continuities can result between adjacent epochs fil-
tered by this method.

The frequency-domain methods described brief-
ly above and detailed in Appendix B also provide
a means of computing the gain functions for many
of the digital filters in common use in psychophys-
iology: Thus, if any symmetric weight series is
transformed to the frequency domain, its gain func-
tion is given by its cosine components. A consid-
eration of several examples of this generalization
illustrates several important points. Gain functions
for some low-order equal-weight moving-average
filters (Figure 5) indicate several characteristics of
such filters. First, they have considerable ripple, in-
verting the signal (gain < 0.0) by 20% or more in
several frequency ranges. Second, such filters have
zero gain at all frequencies that are multiples of
f,/j and less than the Nyquist frequency, where j is
the number of weights. Third, the half-amplitude
cutoff frequency for an equal-weight filter is ap-
proximately .61-f,/j (half-power cutoff frequencies
are approximately .45-f,/j; the .45 is comparable to
the .44 of Ruchkin and Glaser, 1978, and the .44-
.47 of Ruchkin, 1988). This last point implies that
j and f, cannot be specified independently; because
j must be an integer, available cutoff frequencies
are fairly limited.

Using the same filter width and cutoff frequency,
equal-weight filters may be compared to unequal-
weight filters constructed by the steps described
above and in Appendix B. Figure 6 illustrates that
unequal-weight filters computed by the present
method have less ripple and considerably narrower
transition bands (i.e., sharper roll-off).

Ruchkin (1988) provides a detailed explanétion .

of the use of equal-weight, moving-average filters
for smoothing. In addition, he suggests that such
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filters be applied twice; i.e., the original time series
X is filtered to create Y, and then Y is filtered again
to create Z. The above comparison suggests a rea-
son why multiple passes may be preferred when
using equal-weight smoothing. Applying an equal-
weight filter multiple times is equivalent to apply-
ing a tapered weight filter for a single pass. In ad-
dition, the filter’s width is effectively increased to
2j— 1. As suggested in Appendix B, tapering the tails
and increasing the width results in less ripple and
a narrower transition band, exactly the result ob-
tained by Ruchkin. For example, the weighting
function for a fixed-weight filter of width 5 is {.2,
.2,.2,.2,.2}). Two applications of this filter are math-
ematically equivalent to a single application of a
variable-weight filter with the following weighting
function: (.04, .08, .12, .16, .2, .16, .12, .08, .04}. An
equal-weight filter is easier to comprehend and has
potential speed advantages, as noted earlier. How-
ever, a single application of an unequal-weight filter
provides the ability to customize the filter to
achieve virtually any gain function that the phys-
jological signal and experimental questions de-
mand.

The present frequency-domain analysis of equal-
weight filters provides a perspective on the ubig-
uitous problem of how long a baseline should be.
Itis clear that sensitivity to momentary fluctuations
in a physiological process decreases as the length of
the baseline increases. The present frequency-
domain analysis describes that functional relation-
ship mathematically. As noted above, a mean may
be considered as an FIR filter with all weights equal
to 1/N. If j points are averaged for a baseline, then
the degree to which periodic activity of any fre-
quency up to f,/2 is reflected in that baseline can
be computed using the methods described above
and in Appendix B. In general, the shape of the
relationship between number of points averaged for
a baseline and sensitivity to periodic activity will
be similar to that shown for selected values of j in
Figure 5. Note that this analysis assumes that the
physiological process is stable (stationary); that is,
that the mean and frequency components do not
change. For this reason it may be more useful in
selecting durations for trial baselines than for ses-
sion baselines.

Finally, the frequency characteristics of moving
polynomial filters can also be analyzed using fre-
quency-domain methods. Figure 7 presents ampli-
tude gain functions produced by the 21-weight cu-
bic polynomial given by Porges (1985) and by a 21-
weight filter computed by the frequency-domain
methods described briefly above and detailed in
Appendix B. As shown, the frequency-domain
method produces a filter with less ripple in the stop
band, whereas the cubic polynomial filter has a nar-
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Figure 7. Comparison of transfer
functions for a 21-weight cubic mov-
ing polynomial filter and a 21-weight
filler designed using frequency-
domain methods.

out altering the cutoff frequency.

rower transition band. Empirical tests suggest that
these differences hold for polynomial filters up to
at least 51 weights and fifth order. Choice of filter
would thus depend in part on the relative impor-
tance of these two characteristics for a specific ap-
plication. Although stop-band ripple for the basic
moving polynomial filter can exceed 20% of original
amplitude, Hamming (1989, pp. 47-50) notes that
such ripple can be reduced by tapering the ends of
the weight series. Nonlinear transformations of am-
plitude (e.g., power) will alter the effect of stop-band
ripple. For example, by using the logarithm of pow-
er based on the residual from the moving polyno-
mial filter, Porges attenuates effects of the stop-band
ripple seen in the amplitude gain function.

Another consideration in choosing between
moving polynomial and frequency-domain filters is
cutoff frequency. Quadratic and cubic polynomials
have half-amplitude cutoff frequencies equal to ap-
proximately 1.3-f, divided by the number of
weights; the corresponding constant for quartic and
quintic polynomials is 2. (As demonstrated by Ken-
dall, 1976, moving polynomial filters of order 2k
are equivalent to those of order 2k+1.) Because f;
for any order of polynomial filter is a function of
the filter width, there is a limitation on cutoff fre-
quencies for such filters that is similar to that noted
above for equal-weight filters. .

Applications of Filters Designed
in the Frequency Domain

Some of the issues in digital filter design are il-
lustrated in a comparison of three EEG data sets.

In a standard ERP study, one often wants to iden-
tify components that are roughly half-sinusoids and
quantify their peak amplitudes and latencies. The
phase distortion that a conventional analog filter
would introduce might affect the latency measure-
ment. On the other hand, setting the analog low-
pass filter too high is problematic, because search-
ing for the maximal value in a latency window risks
capitalizing on small, chance fluctuations (noise) in
the channel. Hence, it is useful to digitally smooth
the data before scoring. One must estimate the fre-
quency characteristics of the component(s) of in-
terest and select a filter that has either a narrow
transition band or f, well above those frequencies.
In data digitized at 125 Hz (Giese-Davis, Miller, &
Knight, submitted), we expected the main ERP
components of interest to be below 5 Hz, and we
wished to remove alpha-band information (around
10 Hz) prior to scoring. A low-pass filter with a half-
amplitude cutoff of 5 Hz would require a moder-
ately narrow transition band, in order to pass 0 Hz
and still remove alpha. A 31-weight filter was found
to be adequate, with an amplitude gain of 96% at
0 Hz, 87% at 2 Hz, and 2% at 10 Hz. In contrast,
to look at baseline EEG, a 31-weight filter con-
structed to pass only alpha (8-13 Hz half-amplitude
cutoffs) was less effective (Etienne, Deldin, Giese-
Davis, & Miller, 1990). The gain was only 61% at
10 Hz, then down to 25% at 6 and 16 Hz, and 2%
at 3 and 18 Hz. The unfortunate attenuation at 10
Hz was essentially due to that frequency being rel-
atively close to both of the cutoff frequencies; very
narrow transition bands, requiring many weights,
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are necessary in such a case. A 61-weight filter
would have provided a 90% gain at 10 Hz, with 6
and 15 Hz down to 7%. A 91-weight version would
have been very time-consuming but very effective:
99% at 10 Hz, 1% at 6 and 15 Hz. A quite different
case is the measurement of very slow phenomena
underlying fast EEG activity. For contingent neg-
ative variation (CNV) data (Yee & Miller, 1988),
we essentially employed a moving-average filter to
remove conventional EEG: we averaged together the
last 250 ms of EEG to score the CNV (sometimes
also called an “area” measure). Such a case in which
signal and noise are presumed to be far apart in
frequency permits a wide transition band, and one
can benefit from the computational speed of the
moving-average method.

Comparison of Analog and Digital Filters

Having surveyed a variety of digital filters and
presented a general method for designing and eval-
uating such filters, it is possible to consider the rel-

ative advantages and disadvantages of analog and

digital filters with respect to transition bandwidth,
phase shift, consistency, stability, low-frequency ap-
plication, cost, and availability.

Transition bandwidth. In general, a filter with a
narrow transition band is preferable to one with a
wide transition band. This is because the former
will pass more (signal) on the pass-band side of the
cutoff frequency and attenuate more (noise) on the
stop-band side of the cutoff frequency. That is, a
narrower transition band allows the separation of
closer frequencies. Commonly available analog fil-
ters often have transition bands of an octave (a
range of frequencies over which the frequency is
doubled) or more. Because the constraints on an-
alog and digital filter design are quite different, it
is often possible to construct a digital filter to have
transition bands that approach zero width when
this is not feasible with analog circuitry. Thus, dig-
ital filters provide the capability of removing arti-
fact having frequency components that are very
close to those of the signal of interest. Applications
that demand narrow transition bands are those in
which signals in one frequency band are to be
passed while signals in closely adjacent frequency
bands are to be attenuated (e.g., constructing filters
to distinguish the conventional delta, theta, alpha,
and beta frequencies among broadband EEG). In
principle, it is easy to customize a digital filter to
be particularly sensitive to any specifiable pattern
of signal or noise. However, there is a trade-off be-
tween resolution in the frequency domain (narrow-
ness of the transition band) and resolution in the
time domain; more on this below.
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Phase shift. A primary disadvantage of analog
filters is the variable phase shift that they typically
introduce. Standard resistor-capacitor (R-C) analog
filters shift the input signal in time, and the amount
of shift varies as a function of frequency. To ap-
preciate this phase delay intuitively, consider a sim-
ple analog low-pass filter typically found in an am-
plifier. Essentially, higher-frequency components of
the signal are removed by averaging over time.
Fach moment’s input voltage is blended with recent
moments’ voltages. The filter thus has some mem-
ory (provided by the capacitor discharging through
aresistor in the simplest R-C filter). A sudden (high-
frequency) change to a new input level is not re-
flected significantly in the output until the new level
has been sustained long enough to dominate the
filter’s memory (i.e., until the capacitor charge in-
creases significantly). This is the basis of the fa-
miliar rising and falling curve associated with a low-
pass filter circuit’s time constant, as shown in Fig-
ure 8. -

The amount of phase distortion is a function of
frequency. Because bioelectric signals generally
contain multiple frequency components, a tradi-
tional R-C analog filter will therefore distort not
only the latency but also the shape of the input
waveform. In contrast, FIR digital filters generally
have zero phase shift and thus do not distort the
shape of the waveform, other than the desired at-
tenuation of particular frequencies. No phase shift
occurs if the FIR filter is constructed to have sym-
metrical weights (i.., in defining output point t, the
same weight is applied to the input points at t—k
and t+k).

Phase shift is of particular concern in psycho-
physiological research when the timing of an event
(e.z., a peak of an ERP component) is the focus of
investigation. Analog filters will generally increase
the apparent latencies of such events relative to
their actual time of occurrence, with the amount of
this increase depending on the frequency compo-
nents of the event and specific characteristics of the
filter design. This bias in latency estimates can be
eliminated by replacing the analog filter with an
FIR digital filter.

input Signal

JUUL

Filtered Signal

WAVAVAN

Figure 8. The typical analog resistance-capacitance cir-
cuit used as a low-pass filter shifts the phase (e.g., latency
of peak amplitude) of a signal.
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In contrast to FIR digital filters, the phase shift
of IIR filters resembles that of analog filters. This
phase shift may be a desirable feature when the
researcher seeks to replicate and extend previous
research conducted with analog filters (e.g., Cook,
Hawk, Davis, & Stevenson, 1991).

Consistency and stability. A further disadvan-
tage of analog filters is the inherent variability
among filters that have nominally identical gain
and phase characteristics. Analog filters are con-

structed from physical components that are inexact'

in their specifications. Even a set of amplifiers with
filters manufactured at the same time by the same
manufacturer would not be expected to have ex-
actly the same characteristics, and greater variabil-
ity might be expected among filters and amplifiers
manufactured at different times. There is potential
for such differences to have systematic effects that
may mislead the investigator who generally uses the
same amplifier for the same measurement. The po-
tential for error may be particularly great in the case
of EEG recording, where a montage of placements
is used, and the distribution of a signal across the
scalp is of special interest. A related issue is that of
consistency across time. Many electronic compo-
nents are temperature-sensitive and may therefore
change their electrical characteristics slightly as they
or the devices in which they are installed warm up.
In contrast, as mathematical operations, digital
filters (including IIR filters) may be applied with
complete consistency at different times, or across
multiple recording channels. They do not need to
be adjusted or recalibrated to maintain their spec-
ifications. Thus, digital filters eliminate the prob-
lems that inconsistency and instability could create.
Low-frequency application. Although most filters
required in psychophysiological research have cut-
off frequencies in the .1 Hz to 1 kHz range, this is
not universally true. For example, several ranges of
frequencies below .1 Hz are discriminated in bioe-
lectrical potentials recorded from the abdomen (e.g,
in electrogastrography). Design of stable analog fil-
ters with narrow transition bands is particularly dif-
ficult in this range, and for this reason digital fil-
tering methods are now common in this research
area.
Practical considerations. The primary advan-
tages of analog filters are practical. Analog filters
are an integral part of most physiological recording
amplifiers in common use. In their most basic form,
they are extremely inexpensive. Analog filtering
may be readily applied as the data are recorded,
prior to A/D conversion, without subsequent com-
putation. Furthermore, if analog filtering is used to
eliminate high-frequency components in the signal,
the minimum frequency for A/D conversion is re-
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duced (under the Nyquist rule). Thus, where A/D
conversion cannot be accomplished at at least twice
the fastest frequency in the original signal, there is
usually no alternative to the use of an analog filter.
(Analog filters used to eliminate frequencies that
would violate the Nyquist rule are known as anti-
aliasing filters.) Furthermore, current recording
hardware permits the analog filter selection to be
made easily, whereas software for setting and im-
plementing digital filters has not been so readily
available (though see Cook, 1981; Digital Signal
Processing Committee, 1979; Farwell et al., in
press).

Despite the above considerations, digital filters
may be more practical in certain circumstances.
Most bioelectric recording devices provide a lim-
ited number of settings for the cutoff frequencies of
the analog filters. Where a required cutoff frequency
is not available, the investigator may choose to con-
struct a custom analog (hardware) or digital (soft-
ware) filter. As the level of software sophistication
among psychophysiologists increases, the digital so-
lution becomes more tractable. Moreover, digital
filters may be programmed to operate in real time,
during data collection (Cook, Atkinson, & Lang,
1987; Rockstroh, Elbert, Birbaumer, & Lutzenber-
ger, 1982). If low-pass filtering is done on-line, the
frequency at which the data must be stored is re-
duced.from twice the fastest frequency in the orig-
inal signal to twice the upper limit of the transition
band of the filter. This frequency may be less than
that required if the filtering were done with analog
circuitry, thus reducing data storage needs.

Summary and Conclusions:
A Decision Tree for Filter Selection

To summarize the points made regarding digital
and analog filters, we suggest the following decision

tree for filter selection. To select a filtering strategy,

we suggest that the investigator consider the fol-
lowing questions:
1. Does the raw signal have faster components than
45 f2
Y: Is there a single high-frequency noise
source (e.g., power-line noise) AND can
the sampling period be set to an exact mul-
tiple of the period of that noise source

AND is DC distortion as large as '/2 the

amplitude of the noise tolerable?

Y: Continue with Question 2.

N: Increase sampling frequency OR use
an analog anti-aliasing filter sufficient
to. remedy this problem. Continue
with Question 2.

N: Continue with Question 2.
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2. Is there an analog filter available with accept-
able cutoff frequencies, transition bandwidth,
phase shift, consistency, and stability?

Y: Use an analog or a digital filter. If com-
parisons among multiple channels are to
be made, a digital filter is preferred.

N: Use a digital filter. Continue with Ques-
tion 3.

3. Is phase shift acceptable?

Y: Consider an IIR filter (cf. Ackroyd, 1973),
but continue with Question 4 to evaluate
FIR possibilities.

N: Use an FIR digital filter. Continue with
Question 4.

4. Does an equal-weight filter have acceptable cut-
off frequency, transition bandwidth, and ripple
specifications?

Y: Use an equal-weight filter.

N: Use an unequal-weight filter. Continue
with Question 5.

5. Is a cutoff frequency of ' f, and a wide tran-
sition band acceptable?

Y: Consider the {.25, .50, .25] filter.

N: If this simple unequal-weight filter is un-
acceptable, the choices become more com-
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plex. The frequency-domain method de-
scribed in Appendix B provides a general
method for designing complex unequal-
weight filters to meet a variety of specifi-
cations of pass band, transition band, and
ripple. The reader might also want to con-
sult the engineering literature for other ap-
proaches to digital filter design (e.g., Dig-
ital Signal Processing Committee, 1979).
Certainly requirements of replication
might lead an investigator to choose one
type of filter (e.g., Porges’s 1985 moving
polynomials) over other similar filters.
Practical issues, particularly computation
time when the filter is to be implemented
on-line, will also constrain the choice of
filter.

Thus, because digital filters have very different
advantages and disadvantages from analog filters,
the former may be helpful when the latter are prob-
lematic. Besides clearing up some confusion in gen-
eral terminology for analog and digital filters, we
hope that this presentation makes digital filter tech-
nology more accessible to psychophysiologists.
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Appendix A
Observations on Fourier Analysis

In preparing this appendix, we noted that mathe-
matical presentations of Fourier analysis in reference
texts (e.g., Ackroyd, 1973; Bloomfield, 1976; Brillinger,
1975; Gottman, 1981; Jenkins & Watts, 1968) dem-
onstrate as great a diversity as that previously noted
in the specification of cutoff frequencies. Discrepancies
in the exact formulas for the Fourier transform are
compounded by the fact that quantities that are often
of ultimate interest (e.g., amplitude, power, or phase)
are based on the results of the transformation, and
therefore are also presented in a variety of forms. The
approach we have taken is to present the direct and
inverse Fourier transformations in the simplest and
most intuitive forms that support their ultimate use
in digital filter design. We then present our own equa-
tions for amplitude, power, and phase, to facilitate un-
derstanding of the transformations. We use those
equations in the design of digital filters as described
in the body of the article and in Appendix B.

To calculate the direct Fourier transform of time
series X of even length n (X,, X, X,, . . ., X, 1), two
expressions are evaluated for all integers h from 0 to
n/2:

Ap = X, - cos (h21rt/p) (A.1)

1
LI

&

B, = (A2)

R

n-1
- > X, - sin (h2xt/n)
=0

The values A, and B, are sometimes known as
Fourier coefficients. (All published formulas that we
encountered for the Fourier coefficients include
summed cross-products of the time series with the trig-
onometric functions. Precise definitions vary across
reference sources with regard to whether this sum is
left unchanged, multiplied by 1/n, or multiplied by 2/
n; in whether h extends from 0 to n/2 or from 0 to
n—1 (in which case values from n/2+1 to n—1 are
the mirror image of those from 1 to n/2); and in wheth-
er t extends from 0 to n—1 or from —n/2 to n/2—1.)
The inverse Fourier transform uses these coefficients
to reconstruct the original time series by the following
equation:

X, = Ao+
n/2-1
2-Y (A, - cos(h2xt/n) + By - sin(h2xt/n))
h=1
+ A,z * cos(xt) (A3)

The following points regarding the direct and in-
verse Fourier transforms are significant for the present
discussion:
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1. Understanding the equations depends primarily
on analysis of the h2xt/n expression for which the sine
and cosine functions are evaluated. Because t ranges
from 0 to n—1, the value of the t/n portion of this
expression ranges roughly from 0 to 1 (precisely, from
0 to (n—1)/n). The constant 2x scales that range to
extend from O to approximately 2x, over which the
sine and cosine functions make one complete cycle.
The multiplication of this range by h determines the
number of complete cycles represented by the expres-
sions cos (h2xt/n) and sin (h2xt/n) when evaluated for
t=0 to n— 1. The cosine and sine functions differ only
in phase, by x/2 radians (90 degrees).

2. Given the preceding logic, different integer val-
ues of h correspond to different numbers of complete
sinusoidal cycles within the total time (T) represented
by the time series. For example, if data are sampled
for 4 seconds (T = 4 s), h=1 corresponds to .25 Hz
(1 cycle in 4 s), h=2 corresponds to .5 Hz (2 cycles in
4 s), and so forth. Because h is always an integer, the
resolution of frequencies for which A, and B,, are eval-
uated is 1/T. That is, in the T = 4 s example, each
successive value produced by the direct Fourier trans-
form corresponds to activity 1/T = .25 Hz faster than
the previous value. It is noteworthy that this frequen-
cy-domain resolution of the Fourier analysis is deter-
mined not by the sampling rate but by the total time
represented by the time series (T).

The frequencies corresponding to the values of h
are sometimes referred to as harmonics, referring to
the fact that each frequency corresponds to one more
complete cycle within the total time represented by the
time series than the preceding frequency. The n/2-th
harmonic corresponds to the frequency for which each
complete cycle is represented by only two points. The
n/2-th harmonic has frequency (n/2)/T = .5 - (n/T)
= .5 - f,, the Nyquist frequency. This limit on the
highest frequency is the basis for the Nyquist rule,
which requires a minimum of two sample points with-
in the period corresponding to one cycle at the highest
frequency in the data. Note that, in contrast to the
resolution (1/T) of the spectrum, the maximum fre-
quency represented is determined by the sampling rate
and is independent of the amount of time represented
by the time series. For example, if 480 samples were
obtained in 4 s (120 Hz), then the highest harmonic
(n/2 = 480/2) would be 240 cycles. When divided by
4, this yields 60 Hz = half the sample rate = Nyquist
frequency. If only 2 s of data had been obtained at 120
Hz sampling (i.e., 240 samples), the highest harmonic
would be 240/2 = 120 cycles in 2 s, still 60 Hz.

3. B, is always zero forh = O and h = n/2. For h
= 0, this is true because the expression h2xt/n reduces
to 0, and sin (0) = 0. For h = n/2, h2=t/n reduces to
«t, and sin (at) = 0O for all integer values of t. Thus,
there are n/2 + 1 values of A but only n/2 — 1 values
of B that may be nonzero for the direct Fourier trans-
form of a time series of length n.

4. The balance of the equations for A, and By, in-
volves summing the cross-products of the trigono-
metric function and the sampled data X across time,
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and dividing by n. Each resulting averaged cross-prod-
uct will ‘be large to the extent that periodicities in the
data match the particular frequency involved in the
trigonometric function. Both sine and cosine functions
are employed in the calculations. This is because, for
any given frequency, sine and cosine functions are un-
correlated due to their 90 degree phase difference. This
orthogonality allows the two functions, in combina-
tion, to represent all of the variance of a sinusoidal
function. That is, if there is activity at that frequency -
in the data, it will necessarily correlate (i.e., produce
a nonzero average cross-product) with at least one of
the two functions.

5. One way in which the Fourier coefficients may
be conceptualized is in terms of their relationship to
the amplitudes and phases of the constituent sinusoids
that contribute to the time series. Thus, Equation A.3
may be rewritten as Equation A.4:

n/2-1
X,=Ro+ 3 Rh-cos(@-rl’,,)
hel n

+ R, * cos(xt) (A.9)

The amplitude of the sinusoidal component of X that
completes h cycles within the time series is Ry, and
the phase relationship of that sinusoid to the time pe-
riod sampled is P,,. Both quantities may be calculated
from the Fourier coefficients using the following equa-
tions:

R, = 2 - sqrt(A{+B}),
whereh = 1,2, 3,..., n/2-1;
and

Ry = sqri(A{+BY),

where h = 0, n/2 (A.5)
" P, = arctan(—By/A,),
whereh = 1,2,3,...,n/2-1 (A.6)

Thus, the amplitudes of the constituent sinusoids of a
time series are represented by the combined magni-
tudes of A, and By, whereas the phases of the sinusoids
are represented by the signs and relative magnitudes
of A, and B,. When amplitude is graphed as a function
of frequency the result is referred to as the amplitude
spectrum (e.g., Figure 4, Panel a). Phase is based on a
cosine function and therefore increases from 0 to 180
degrees (0 to  radians) as the function descends from
its peak to its trough. Following a point of disconti-
nuity, the phase then increases from —180 degrees
(— = radians) to 0 degrees for progressively more pos-
itive values on the ascending limb of the function. The
phase of a particular harmonic depends on where the
beginning of the time sefies falls on the constituent
sinusoid at that harmonic. Thus, phase will be positive
if the data begin on the ascending aspect of the sinusoid
and negative if the data begin on the descending aspect.
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When phase is graphed as a function of h (the har-
monic number), it is referred to as a phase spectrum
(e.g., Figure 4, Panel b).

6. In the discussion of filtering, we made reference
to the distinction between amplitude and power. Fre-
quently, sizes of the constituent sinusoids of a time
series are expressed in terms of power:

Power,, = 2 - (AZ+B}),

where h = 1,2, 3,.., n/2-1;
and
Power, = (A}+BZb),

where h = 0, n/2 (A7)

The graph of power as a function of frequency is re-
ferred to as the power spectrum.

One interpretation of power is contribution to the
variance of the time series. When power values are
summed across all frequencies greater than 0 Hz (DC),
the result is the total variance; when power corre-
sponding to DC is included in this sum, the result is
the mean square. Thus, one way to construe Fourier
analysis is as the partialling of variance in a time series
among constituent frequencies.

7. We have found other statistical equivalences of

Ay, and By, helpful in understanding the Fourier trans-
form. For example, because cos (0-2xt/n) = cos (0) =
1, Ag = I/n - 2 (X, 1) = the mean of the time series
(i.e., the net DC level). If the mean is subtracted from
the time series prior to transformation, then A, (h =
1,2,3,..,n/2)and B, (h = 1,2,3,..., n/2—1) are
the sample covariances of time series X with cosine
and sine functions having h complete cycles within the
total time period represented by the time series.

Multiple regression further elaborates this statisti-
cal framework within which the Fourier coefficients
may be understood. Consider a set of n/2 sinusoidal
time series ,C, each of length n, formed by calculating
the cosine of h2#t/n,t = 0, 1, 2, . ., n— . These time
series differ only by the valueof h(h =1, 2,3, ...,
n/2) so that each completes exactly h cycles within the
time series. A second set of n/2—1 time series ,S re-
sembles ,C, except that it is formed by calculating the
sine of h2xt/n. Then, A, and B, calculated by the direct
Fourier transform will satisfy the following regression-
style equation:

X, = Ap +
n/2-1

Z(z-Ah-hC.+2-Bh~hS.)

bl
+ Apz - G (A.8)

In Equation A.8, A, functions as the intercept, 2:A,
and 2-B, function as regression coefficients for fre-
quencies from 1 to n/2—1, and A,, functions as the
regression coefficient for the n/2-th frequency. Note
that there are n/2+ 1 regression coefficients for cosine

predictors and n/2— 1 coefficients for sine predictors,
or n total coefficients. As in regression, inclusion of n
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predictors accounts for all variance, and so there is no
error of prediction. If some of the predictors were ex-
cluded, then A, and B, calculated by the direct Fourier
transform would minimize the mean squared error in
recreating the original time series from the predictors
that remained. It should also be noted that expanding
Equation A.8 by restating each ,,C, as cos (h2xt/n) and
each S, as sin (h2xt/n) yields an alternative statement
of Equation A.3, the inverse Fourier transform.

8. There is a peculiarity about the representation
of information exactly at the Nyquist frequency. With
only two samples per cycle, the -discrete time series
preserves the frequency but cannot represent both the
amplitude and the phase. This is readily illustrated by
assuming a case where the raw signal is a 1-Hz sine
wave with peak-to-peak amplitude of 1 V, sampled at
2 Hz. Let the phase of the sampling be such that sam-
ples are obtained exactly at the negative and positive
peaks of the raw waveform. Although the time series
that would result from this sampling would be con-
sistent with a 1-V sine wave, the identical time series
could also be obtained by sampling a larger 1-Hz sine
wave at consistent “off-peak”™ points in the wave. In
general, if the true phase were known, then the true
amplitude could be determined from the time series;
conversely, if amplitude were known, phase could be
deduced. Because neither is typically known, the ob-
tained value of A, at the Nyquist frequency should be
considered to be the minimum amplitude with respect
to the input signal. In the limiting case that illustrates
this principle, a time series consisting entirely of zeros
could result from sampling a large signal at the Nyquist
frequency exactly at its zero-crossings.

If the raw data contain periodic activity at fre-
quencies faster than the Nyquist frequency, the re-
sulting aliasing will cause the power associated with
those frequencies to be reflected downward across the
Nyquist frequency (fy). For example, 60 Hz noise in
a signal digitized at 100 Hz would appear as a 40-Hz
signal in the power spectrum. Frequencies above f, will
reflect successively across the nearest lower multiple
of fy until a value in the 0 to fy range is obtained. For
example, 60 Hz noise digitized at 50 Hz would reflect
once across 50 Hz (= 2 - fy) to 40 Hz, and again across
25 Hz (= fy) to appear as a 10-Hz signal. Because
multiples of fy serve as the folding or reflection points
for the aliasing of high-frequency signals, fy is also
known as the folding frequency (Glaser & Ruchkin,
1976, p. 113).

One phenomenon relevant to aliasing is useful
when the investigator wishes to sample at less than
twice the frequency of a known noise source. When
the frequency of the noise source is an integer multiple
of the sampling rate, distortion resulting from aliasing
is typically of little or no consequence. For example,
if 60 Hz noise is sampled at 10, 12, 15, 20, 30, or 60
Hz, every sample falls at the same phase of the 60-Hz
sine wave, and thus no cyclic low-frequency (aliased)
signals will appear. There remains a distortion of the
amplitude of the power or amplitude spectra at 0 Hz.
This occurs because in each case in which noise is an
integer multiple of fj the application of sequential re-
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flection across multiples of fy ultimately leads to an
aliased signal at 0 Hz. In other words, “catching” the
fast noise sine wave at a consistent level in its cycle
will affect the level (= DC = 0 Hz amplitude) of the
samples.

9. Fourier transform computations such as those
required for the construction of digital filters are com-
monly performed using computer subroutines that im-
plement a Fast Fourier Transform (FFT) algorithm
(e.g., Marple, 1987; Robinson, 1983). This algorithm
substantially reduces computation time when the
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number of points in the time series (or related fre-
quency-domain representation) is large, although it
typically requires the time series length to be an integer
power of 2 (e.g., 32, 128, or 1024 points). Some less
restrictive forms of the FFT algorithm are surveyed
by Brigham (1974). Regardless of the length of the
series, the direct and inverse Fourier transforms may
be calcylated by Equations A.1-A.3. As will be seen
in Appendix B, restrictions imposed by the FFT al-
gorithm do not restrict the digital filters that may be
constructed.

Appendix B
Finite Impulse Response Filter Design Using the Frequency-Domain Method

The method described here requires direct and in-
verse Fourier transformations, and for this reason the
lengths of the time- and frequency-domain computa-
tion arrays must be determined. The time-domain ar-
ray will hold the filter weights, whereas the frequency-
domain array will hold the gain function. The lengths
of these arrays are dependent: if the time-domain array
has length m, the frequency-domain array will have
length m/2+ 1 (m must be even). The precise value of
m is not critical, although three constraints should be
considered. First, the time-domain scratch array will
ultimately contain the filter weights, and therefore m
must be greater than the maximum filter width that
will be considered. Second, because at several stages
in the process the frequency-domain scratch array will
contain the gain function of the filter, it should be large
enough to provide adequate frequency resolution for
graphing this function. That resolution will be f/m.
Finally, if an FFT algorithm is to be used, m may be
required to be an integer power of 2. Ackroyd (1973)
suggests the following rule-of-thumb: If the transition
band must ultimately be limited to a width of v Hz,
set m to between 5-f,/v and 10-f,/v. We have found
that a computation array of length 256 is more than
adequate for most purposes. .

Step 1. Specification of the ideal gain function. The
ideal high-pass or low-pass filter passes all frequency
components with unity gain on one side of the cutoff
frequency and completely attenuates all frequency
components on the other side of the cutoff frequency.
That is, the gain function is discontinuous between
zero and one at the cutoff frequency, and the transition
band has zero width.

To construct the digital filter, we make use of the
time series concepts introduced in the text of the article
and in Appendix A. We begin with an ideal gain func-
tion specified in the frequency domain as array G of
length m/2+ 1. Each element of this array corresponds
to a harmonic frequency that completes h cycles within
m times the sampling frequency, f,. Thus, the fre-
quency corresponding to Gy, will be (h-f,)/m for h =
0, 1,2, ..., m/2. To represent the ideal gain function,
G, is set to 1.0 if (h-f,)/m falls in the pass band or to
0.0 if (h-f,)/m falls in the stop band. If (h-f;)/m = {,
then G, is set to 0.5.

Band-pass and band-stop filters are specified in the
same manner described above for high-pass and low-

pass filters. The only difference is that the ideal gain
function will have multiple transition bands, and
therefore there will be more than one range of 1’s and/
or 0’s within G.

Step 2. Calculating the initial weights. The inverse
Fourier transform (Equation A.3) is used to obtain the
array of initial weights in the time domain (W) from
the ideal gain function in the frequency domain (G).
In applying the inverse transform, G serves as the cos-
ine component (i.e., Array A). By setting the sine com-
ponent (Array B) to zero, we ensure that the filter will
have zero phase shift (see Equation A.6). Thus, the
equation for each of the m weights becomes:

m/2-1

W, =Gy + 2+ 2, (G, * cos(h2xt/m))

+ Gm2 + cos(xt) (B.1)

which is evaluated for t=0 to m — 1. In order for Equa-
tion 1 (in the text of the article) to apply and the filter
to have zero phase shift, W, is considered the central
weight and W; is multiplied by X,,; to compute Y;, i
= —j to +j. The last m/2—1 weights correspond to
negative values of i; that is, t = m/2+1, m/2+2, m/
2+3, ..., m—1 in Equation B.l corresponds to i =
—m/2+1, —m/2+2, —m/2+3,. .., — 1, respectively,
in Equation 1. Note that the weight series is symmetric;
there is a single unpaired central weight W,, and W;
=W, wherei =1,2,3,...,m/2—1

At this point a digital filter with m— 1 weights has
been obtained. (W, , is excluded because it is unpaired
and would therefore result in phase shift.) Its gain func-
tion is approximately (due to exclusion of W,;) the
ideal gain function that was originally specified in Step
1, multiplied by m. Scaling can be corrected by simply
dividing all elements of W by m, after which the filter
weights are ready for use (i.e., application as in Equa-
tion 1). However, additional manipulation and testing
of the filter are typically desirable, as detailed below.

Step 3. Windowing the weights to obtain the final
form of the filter. Filters with fewer than m— | weights
may subsequently be calculated by applying a *“win-
dow” to the weights obtained in Step 2. The window
application will truncate the ends of the weighting se-
ries and may additionally modify the weights that re-
main within the truncated series. Any window that is
applied will change the gain function of the filter, gen-
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erally reducing its similarity to the ideal gain function
described above.

The principal reason to apply a window is to reduce
the filter from its initial width of m—1 weights. Prac-
tical considerations may dictate that the filter width
be reduced below a certain length. For example, if the
filter is to be applied on-line or if computing time is
otherwise limited, then the filter width may be limited
by constraints on computation time. Another con-
straint on j follows from the fact that the application
of the filter results in the loss of j points at each end
of the time series (Ruchkin, 1988; “loss” in the sense
that the filter cannot be applied to those points). In
some cases, particularly if the data are collected before
the filter is designed, there may be a maximum tol-
erable loss. Several options for handling the ends of
the time series are detailed at the end of this appendix.
However, if filtering is anticipated prior to data col-
lection, then in most cases sufficient data may be re-
corded beyond the time period of interest. A final con-
sideration that promotes reduction in filter width is
that of temporal resolution. The wider the filter, the
greater the loss of information about when particular
events occurred (e.g., the onset of a burst of a particular
frequency). That is, precision in the time domain de-
creases in that more input points contribute to each
filtered point.

Reduction in filter width by simply setting an equal
number of weights at each end to zero increases the
width of the transition band and introduces ripple in
the pass and stop bands. The amount of ripple may
be reduced by tapering the ends of the truncated weight
series. Two tapering functions have been described by
Ackroyd (1973). For the Hamming taper, the remain-
ing weights are multiplied by 0.54 + 0.46 - cos (xp).
For the Blackman window, remaining weights are mul-
tipled by 0.42 + 0.5 - cos (xp) + 0.08 - cos (2xp). In
these equations, p is the distance from the center of
the weighting function to the weight being windowed
expressed as a fraction of the distance from the center
of the weighting function to the first weight beyond
the outermost weight to be retained (i.e., p = i/(G+1),
with i and j defined as in Equation 1). Generally, leav-
ing the truncated weights untapered produces the nar-
rowest transition band but with the maximum amount
of ripple, whereas the Blackman window provides the
least ripple at the expense of widening the transition
band. Moderate ripple and transition bandwidth are
obtained with the Hamming window. Note that trun-
cating and tapering must be applied equally to both
symmetrical halves of the weight series.

Step 4. Calculating the gain function of the win-
dowed filter. The gain function (in the frequency do-
main) for the weights in the windowed filter (in the
time domain) may be obtained by calculating the di-
rect Fourier transform of the weights (see Equations
A.l and A.2). The gain for each frequency is given by
the transform, using the method described in Appen-
dix A for relating frequencies to positions in the G
array. Like the ideal gains, these calculated gains will
generally range from approximately 0.0 (for complete
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attenuation) to 1.0 (for no attenuation). Gains less than
0.0 indicate frequencies for which the filter actually
inverts the input signal (part of the ripple in the stop
band; see Figure 6). If the filter has gain Gy at some
frequency f, then processing a time series with the dig-
ital filter will multiply the amplitude of any periodicity
in the time series at frequency f by Gy and the corre-
sponding power by G¢.

The obtained.gain function may not be completely
satisfactory on the first attempt. Steps 3 and 4 may be
repeated using a different window width and/or ta-
pering function until a satisfactory filter is obtained.
As noted above, the final set of weights should be di-
vided by m prior to use.

A Brief Example

To illustrate the method, we construct a filter to
remove frequencies above 45 Hz from EEG data sam-
pled at 200 Hz. A scratch array of length 20 is em-
ployed, yielding a frequency resolution of f,/m = 200/
20 = 10 Hz. In Step 1, the ideal gain function, G, is
computed: {1, 1, 1, 1, 1,0, 0, 0, 0, 0, 0). Note that
because the filter is to pass data from 0 Hz to the 4th
harmonic (corresponding to 40 Hz), gain is set to 1
for G, to-G,. Ideally, gain is 0 at the 5th harmonic (50
Hz) and above, so G to G, are set to 0.

In Step 2, the inverse Fourier transform (Equation
3) is used to compute the original set of weights: {9,
6.3138, 1, —1.9626, —1, 1, 1, —.5095, —1, .1584, 1,
1584, —1, —.5095, 1, 1, —1, —1.9626, 1, 6.3138).
Thus, Wy = 9.0, W, = W_, = 6.3138, etc.

In Step 3 we decide that no more than 15 weights
may be used because the filter is to be implemented
on-line. We choose a Hamming window to balance
requirements for a narrow transition bandwidth and
minimal stop-band ripple. Zeroing the five elements
of W that are farthest from the central weight (W) and
applying the Hamming window function to the re-
maining elements of W produces: (9, 6.0927, .8653,
—1.4053, —.5400, .3640, .2147, —.0586, 0,0, 0, 0, O,
—.0586, .2147, .3640, —.5400, —1.4053, .8653,
6.0927). The zeros are maintained in the computation
array even though they are effectively eliminated from
the filter. This ensures that the actual gain function
computed in Step 4 will have the same frequency-do-
main resolution as the ideal gain function specified in
Step 1.

Finally, in Step 4 we use the direct Fourier trans-
form (Equations A.l1 and A.2) to compute the gain
function for the filter with-the windowed weights. The
gain function for DC, 10 Hz, 20 Hz, up to 100 Hz (fy)
is: {1.0033, .9970, 1.0048, .9705, .7130, .2880, .0268,
—.0019, .0013, —.0036, .0047}. The gain function in-
dicates, for example, that this digital filter would pass
at least 97% of the signal amplitude from DC to 30
Hz, and would attenuate by approximately 97% any
60-Hz noise. At this point we could repeat Steps 3 and
4 with new window parameters if these or other char-
acteristics of the filter were unsatisfactory.

Prior to use, the filter weights must be divided by
m (in this case, 20) and the order of W must be rear-
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ranged so that it is symmetric about W,. Thus, the
final form of this 15-weight filter, suitable for appli-
cation as shown in Equation 1 in the text of the article,
is: (—.0029, .0107, .0182, —.0270, —.0703, .0433,
3046, .4500, .3046, .0433, —.0703, —.0270, .0182,
.0107, —.0029).

Evaluating Other FIR Filters

As noted in the text, the techniques described here
may be used to determine the gain function for any
moving-average filter with symmetric weights. The
simplest of such filters, for smoothing, is one with N
equal weights of 1/N. Generally N is odd, so that the
filter is symmetric and does not produce phase shift.
To calculate the gain function, the weights must first
be placed in an Array W, similar to that used to con-
struct filters by the method described above, and each
element must be multiplied by m, the length of the
computation array. (The considerations that deter-
mine m here are the same as those that apply when
filters are to be constructed.) For example, to calculate
the gain function for a moving-average filter of width
7 with m = 10, W would be set to: (10/7, 10/7, 10/7,
10/7, 0, 0, 0, 10/7, 10/7, 10/7). (This placement of the
weights within the array is required because the weight
function must be symmetric about the (m/2)+ 1th ele-
ment, as noted in Step 2, above). Referring to the steps
for calculating weights described above, we are cre-
ating a weight series by other means, which may be
substituted for Steps 1-3. Then, as discussed in Step
4, the gain function may be calculated with the direct
Fourier transform. Using Equation A.1, this transfor-
mation of the above array yields {1, .3740, —.2312,
.0546, .0882, —.1429}, corresponding to frequencies of
0, .1, .2, .3, .4, and .5 times the sampling frequency.

FORTRAN Statements to
Implement an FIR Filter

The following FORTRAN subroutine applies a FIR
filter to integer data. NDATA input points are assumed
to be stored in Array IN. W0 holds the weight to be
applied to the point in IN that is being redefined.
NWEIGHTS lagged weights are stored in Array WEIGHTS.
WEIGHTS(I) holds the weight to be applied to input
points I samples before and I samples after the point
being redefined. Filtered data are stored in OUT in real
format for maximum' accuracy. In this implementa-
tion, the first and last NNEIGHTS points are left unde-
fined, but the section that follows details alternative
ways to filter the ends of a time series.
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SUBROUTINE ~ FILTER (NDATA,IN,OUT,

+ WO, NWEIGHTS,WEIGHTS)
INTEGER NDATA, IN(1) , NWEIGHTS
REAL OUT(1). W0, WEIGHTS(1)

DO 2 T = NNEIGHTS+1, NDATA-NWEIGHTS
oUT(I) = IN(I) * WO
DO 1L = 1,NNEIGHTS
UT(T) = UT(I) +
+ (WEIGHTS(L) * (IN(I-L) + IN(I+L)))
1 CONTIME
2 CONTINE
RETURN
END

Filtering the Ends of a Time Series

Because the types of digital filters considered in
detail here require a symmetrical set of points before
and after each filtered point, it is not possible to apply
a (2j+ 1)-length filter to the first and last j data points.
Typical analog filters have the same general problem,
requiring a period of time prior to recording for the
circuit to stabilize and/or to be reset.

There are a variety of ways to handle this situation
with digital filters. The best is always to collect enough
extra data, before and after the epoch of interest, so
that one can discard the j initial and j final points. If
filtering is accomplished on-line, input data can be
continuously filtered but saved for later analysis only
during specific time periods. In some cases, neither of
these options may be possible. Post hoc alternatives
include:

1. Develop a series of shorter weighting functions
for the data close to the ends. For example, if the
weighting function used to filter most of the epoch has
length 31, a 15-weight filter could be developed to filter
Points 8-15, a 3-weight filter could be developed for
Points 2-7, and Point 1 could be left unfiltered. Fil-
tered points closest to the ends would be filtered less
successfully.

2. Pad the ends of the epoch with j zeros, j repli-
cations of the terminal values, or j replications of the
average of the first or last few values. The filter can
then be applied to the entire original time series, al-
though again the data near the ends will be somewhat
suspect.

3. Use an IIR filter for the beginning and end of
the series. The IIR filter can be applied down to the
very last point in the series. If applied off-line, it can
be applied in reverse to the first point in the series.
See Ackroyd (1973) for instructions on how to design
and implement such filters.
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