Advanced Signal Processing ||
(aka Acronym Day)

PCA
ICA
Removal of OCULAR artifacts with ICA (and lots of acronyms)
BESA
Simultaneous EEG with ICA and fMRI!



Announcements 5/3/21

» Papers:
» Research Proposals due this evening (May 3) 11:59 pm via D2L
» Grading Rubric can be seen on D2L
» Use the stipulated format (check website for details)

» Look at the relevant “guidelines” paper(s) (link on website)
» Take home due May 9 at 11:59 p.m. via D2L
» Course Evals now available on D2L
» Class Feedback and Q&A



Course Evaluations

» Your opinions are ...
» Anonymous
»Valued
» Important to create course improvements

» Find the link:
»D2L
»Emails that pester you
» Or directly: tceonline.ola.arizona.edu



Advanced Signal Processing ||
(aka Acronym Day)

PCA
ICA
Removal of OCULAR artifacts with ICA (and lots of acronyms)
BESA
Simultaneous EEG with ICA and fMRI!



Dimensionality explosions!

32, 64, 128, 256



Principal Components Analysis

» A method for reducing massive data sets
» See Handout for gory details



PCA (1): The Data matrix

D Hxn =
Subject #1 [t o, T : c e -1 dhere N Number subjects
Su ct #2 t g, t- . - ot ' Number
Subject #3 t o, T . - . -1 per av

voltage at time
point O, 1,

S U.l:]j ect #N

» Data Matrix above shows only one site — could have multiple sites by

adding rows for each subject
» This data matrix is for “temporal PCA” but one have channels by time

points matrix and transpose for “spatial PCA”



PCA (2): The Score matrix

S Mxm
Subject #1
Subject #2
Subject #3

= U.l:]j ect #N

» These scores for each subject are optimally weighted composites of the
original data, designed to capture as much variance as possible with as few
scores as possible.

» But for conceptual ease, imagine 5 scores: P1, N1, P2, N2, P3 amplitude



PCA (3): The Loading matrix
(to guess what components mean)

mxn

Component #1 ; or e e l_, Where m Number of components
Component #2 " gy v 1 ., n = Number sample points
Component #3 o 4 oy e e 1 _, per average

c e c e 1 = component loading for
Component #m . sy e e 1_.] time point 0, 1,
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Figure 10-4. Plot of four sets of component loadings de-
rived from a principal-components analysis (PCA) of an
ERP data set. Each of the component loading vectors is
composed of 128 peints corresponding to 128 time points
(100-Hz digitizing rate) in the waveforms.




Spatial PCA on Sample Data

PCA version




PCA (3b): The Loading Map
(for Spatial PCA)




Reminder: The ERP from which 1t derives
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PCA Component 2
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PCA (4): Reconstructing Data Matrix

>Dan~:S “ L
» This reconstructed Data matrix will differ slightly from the
original Data matrix because not all n components are used.

» To the extent that the m components account for most of the
variance in the original data set, the reconstructed data matrix
will closely approximate the original data matrix.

NXxm



PCA (4): Caveat Emptor

» PCA is a linear model; assumes the components sum together without
Interaction to produce the actual waveform

» Sources of variance are orthogonal; If two sources are highly correlated,
may result in a composite PCA component reflecting both

» Component invariability in terms of latency jitter across subjects

» PCA does not distinguish between variations in amplitude vs variations
In latency

» Especially a problem in comparing control vs pathological groups;
pathological groups will typically be more variable

» Allen & Collins unpublished simulation study:
» Two groups: Control & Pathological
> ldentical waveforms for each group differed only in latency
» The two groups differed significantly on three of four principal component scores

> In other words, if one indiscriminately interprets these as amplitude or morphology
differences, one would be WRONG!!!



ICA ... a “better” PCA?

» PCA finds orthogonal components
» First PC accounts for most variance
» Next PC accounts for most remaining variance
» Components will have orthogonal scalp distributions
» |CA separates temporally independent components
» Also known as blind source separation

» May or may not correspond to brain “hotspots” but do represent functional brain
networks

> See:
http://arnauddelorme.com/ica_for dummies/



http://arnauddelorme.com/ica_for_dummies/

ICA Decomposition
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ICA vs PCA

Principal component analysis

PCA

2 a1 o0 1 2 3
Variable 1

From Tzyy-Ping Jung , presented at EEGLab Workshop, Nov 8,2007
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1.5+

Independent component analysis

ICA

Variable 1




EEG data are mixtures of source signals

Cocktail Party
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From Tzyy-Ping Jung , presented at EEGLab Workshop, Nov 8,2007



Speaker 1
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ICA/EEG Assumptions

e Mixing is linear at electrodes
e Propagation delays are negligible

e Component time courses are
independent

e Number of components < number
of channels.

27

From Tzyy-Ping Jung , presented at EEGLab Workshop, Nov 8,2007



ICA: The Projection Map

ICA version




ICA: The Projection Map

Largest ERP components of ICA version
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ICA: Trial by Trial IC Projection to Pz
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PCA Component 2
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|Cs as Artifacts!



“Clinical” vs Actuarial Approaches

- mem., W WS BN

Clinical Versus Actuarial ]udgment

RoBYN M. DAWES, DAvID Fausr, PauL E. MEEHL

Professionals are frequently consulted to diagnose and
predict human behavior; optimal treatment and planning
often hinge on the consultant’s judgmental accuracy. The
consultant may rely on one of two contrasting approaches
to decision-making—the clinical and actuarial methods.
Research comparing these two approaches shows the
actuarial method to be superior. Factors underlying the
greater accuracy of actuarial methods, sources of resis-
tance to the scientific findings, and the benefits of in-
creased reliance on actuarial approaches are discussed.

Dawes, R.M., Faust, D., & Meehl, P.E.(1989). Science, 243, 1668-1674.

a clinical practitioner. A clinician in psychiatry or medicine may use
the clinical or actuarial method. Conversely, the actuarial method
should not be equated with automated decision rules alone. For
example, computers can automate clinical judgments. The computer
can be programmed to yield the description “dependency traits,”
just as the clinical judge would, whenever a certain TeSponse appears
on a psychological test. To be truly actuarial, interpretations must be
both automatic (that is, prespecified or routinized) and based on
empirically established relations.

Virtually any type of data is amenable to actuarial interpretation.
For example, interview observations can be coded quantitatively
(patient appears withdrawn: [1] yes, [2] no). It is thereby possible

[] 3 e a3 ant~

to incorporate qualitative observations 2 ;




“Clinical” vs Actuarial Approaches

» Human raters
» Good source of possible algorithms

» Lousy at reliably implementing them
> Inter-rater
» Intra-rater

» Actuarial methods
» Always arrive at the same conclusion
»\Weight variables according to actual predictive power

Dawes, R.M., Faust, D., & Meehl, P.E.(1989). Science, 243, 1668-1674.




|Cs as Artifacts!

ADJUST:

An automatic EEG rtifact  etector based
on the oint 'se of “patial and ‘emporal
features

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



|Cs as Artifacts!

MARA (Multiple Artifact Rejection Algorithm)
FAST E R (Fully Automated Statistical Thresholding for EEG artifact Rejection)

SAS I CA (a tool for implementing these and more)...



50

Table 1

Measures computed by the three automated tools evaluated here. Abbreviations refer to those used in figures and throughout the paper.

M. Chaumon et al. / Journal of Neuroscience Methods 250 (2015) 47-63

Tool Artifact type Measure Abbreviation
SASICA Blinks/vertical eye movements Correlation with vertical EOG electrodes CorrV

Horizontal eye movements Correlation with horizontal EOG electrodes CorrH

Muscle Low autocorrelation of time-course LoAC or AutoCorr

Bad channel Focal channel topography FocCh

Rare event Focal trial activity FocTr

Non dipolar component Residual variance ResVar

Bad channel Correlation with Bad channel CorrCh
FASTER Eye blinks/saccades Correlation with EOG electrodes EOQGcorr

“Pop-Off” Spatial Kurtosis SK

White noise Slope of the power spectrum Specsl

White noise Hurst exponent HE

White noise Median slope of time-course MedGrad
ADJUST Eye blinks Temporal Kurtosis TK

Eye blinks Spatial average difference SAD

Eye blinks Spatial variance difference SVD

Vertical Eye Movements Maximum epoch variance MEV

Horizontal Eye Movements Spatial eye difference SED

Generic Discontinuities Ceneric discontinuity spatial feature GDSF

Chaumon et al., 2015



Neural components

Expected properties
Smooth/dipolar
topography
Large amplitude

Strong
evoked activity

Power ?eak at
physiological
frequency

Low artefact
measures
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Blink
components

Expected properties

Frontal
topography

Large amplitude

Opposite polarity
low the eyes

No peak at
physiological
frequencies

High correlation
with vertical EOGs

High
eye movement
related measures
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Horizontal eye

movement components

D
Expected properties

Opposite sign bilateral
frontal topography

Step-like
events

Opposite polarity
around the eyes

No peak at
physiological
frequencies

High correlation with
vertical/horizontal EOGs

High
eye movement
related measures
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Non-artifact components may be
mistaken for ocular components

G

Expected properties

Inverse weight at
posterior channels

~ Noisy
time course

No opposite polarity
around the eyes

Weak correlation
with EOGs
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A

Muscle components
Expected properties

Focal topography

Steady noisy
time courses
disg::s)_atmgl
buil m%u‘)
across lrials

Power at
high frequencies

High noise
measures
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Bad Channel
g\omponents

Expected properties

Focal (one channel)
topography

Noisy time course

High correlation with
marked bad channel

High spatial / intertrial
noise measures
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Ambiguous mixture
components
D

Expected properties

More spread-out
topography

Stimulus evoked
response

Transient noise activity
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Rare Events
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Eye blinks

Eye Blink

= Features used
= Spatial Average Difference (SAD)
= Temporal Kurtosis (TK)

= Frontal distribution

= High power in delta frequency band IRz

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



<) Scroll component activities - eegplot()

Figure Display Settings Help
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Vertical Eye Movement

eye blink

® Ceatures used ol
® gpatial Average Difference (SAD) 9 ¥
® Maximum Epoch Variance (MEV)

® Frontal distribution similar to that of an | ‘} {

il

EB VEM HEM GD

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



Horizontal Eye Movement

B Ceatures used —

Movement

® Spatial Eye Difference (SED)
® Maximum Epoch Variance (MEV)

® Frontal distribution in anti-phase (one
positive and one negative)

EB VEM HEM GD

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



Generic Discontinuilties

® Ceatures used

" Generic Discontinuities Spatial Feature (GDSF) Generic Discontinuity
" Maximum Epoch Variance (MEV)

B \ariable distribution

® Sudden amplitude fluctuations with no spatial
preference

" Could be present in as little as one or 2 trials, and
limited to 1 channel

EB VEM HEM GD

® In component data scroll weird activity in the
trial plotted on the IC activity



<) Scroll component activities -- eegplot{)

Figure Display Settings Help
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Uncorrected ADJUST

After Smith, Reznik, Stewart, Allen (2017)



Neural Sources of EEG



Inverse solution is not unique

Forward Solution

Model head Model data

A single pattern of neural
activity will produce a
unique scalp map

Inverse Problem

Desired model solution Recorded data

BUT ...A single scalp map
could have been produced
by an infinite number of
patterns of neural activity

From Tzyy-Ping Jung , presented at EEGLab Workshop, Nov 8,2007



Source Analysis

» BESA -- Brain Electrical Source Analysis

» This Is a model-fitting procedure for estimating intracranial
sources underlying ERPs

» Estimate -- If model fits, then data are consistent with these sources:
yet there Is no unique solution

» Not for ongoing EEG -- too many sources



BESA

» |Imagine a data matrix of ERPSs:
Ve, (# Channels by # timepoints)

» Note that this is really the result of the
subtraction of the activity at the reference
from the activity at the these sites; I.e.,

Van - Uan - Ran
> Note: the reference matrix has identical

rowsl!

hus BESA Presumes that all

channels referenced to the same reference!



BESA

» Reconstruct a data matrix that includes not only the original
channels, but the implicit channel (reference) as well:

Ug,,, (# electrodes = # channels+1),

which represents the activity at each electrode with respect to an
average reference (i.e., the average of all channels)



BESA

» Now this matrix Ug,, can be decomposed into
» a set of sources: S, ., (# Sources by # timepoints)
» a set of attenuation coefficients Cg,
» so that Ug,,, = Cr.s Sen



BESA

» The attenuation matrix Is determined by:
» the geometry between the source and the electrodes

» the nature of the conductance of the three-layer head model (Brain, Skull, Scalp);
» the skull is less conductive than the layers on either side
> this results in a spatial smearing of potentials as they cross the skull

» the skull produces the equivalent of a brain that is 60% of the radius of the outer scalp (rather
than the "true" figure of ~84%)

Next
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Fig. 4. Coronal scalp potential distribution of a radial equivalent dipole modeling

activity of superficial coriex. The dipole is oriented inward 1o mimic, for example,
excitatory pyramidal cell activation at the apical dendrites, producing surface negativity.
neglecting the shielding effect, i.c. taking an eccentricity of about 80% in a homogencous
head model, results in 2 narrow focus, similar to the epicorticaily recorded topography
(top). Adequate reduction of equivalent eccentricity results in a realistic scalp lopogra-
phy, which is much more widespread and exhibits a positive maximum oa the opposite
side of the sphere (bottomy}, The simulated waveforms at the vertex (C,) and at equidistant
(20 electrodes over both hemispheres depict a monophasic activity arising with some
delay after stimulus delivery.




Fig. 5. Coronal scalp distnbution of a tangentiz! dipole modeling fissural cortical
activity. As eaxplained for figure 4, the correctly transformed ecentricity in the homogene-
ous head model (botiom) results in 2 realistic scalp topography with widespread positive
and negative maxima 1o cither side of the actual location af the source. Note that in the
quasistatic approach a single dipole source contributes the same waveform at all elec-
trodes. Ounky the atienuation factor and the sign vary with electrode site.
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BESA

» Note that the decomposition of U into C and S results in

»an electroanatomical time-independent matrix (C) that reflects that
anatomical substrates do not move around in the head

»a time-variant dipole source potential matrix that represents the
change in activity of each source over time



RU= 9.6%2[-1.7-118ms]




BESA Vs PCA Vs ICA
(a battle of acronyms)

» This decomposition is akin to PCA/ICA

» PCA and ICA have sources and propagation coefficients

» PCA solutions are constrained by orthogonality of
components, and by those that account for greatest
common variance

» ICA constrained to find temporally independent
components

» BESA solutions are constrained by the geometry of the
head, the volume conduction of the dipoles, and the
anatomical constraints dictated by the user (e.g., inside the
head, symmetrical, not in the ventricles, must not be in the
brainstem after a certain point in time, etc...)



BESA Vs PCA Vs ICA continued

» Like PCA/ICA, the reconstruction of the original data
set will be imperfect

» With all methods. better chance of reconstructing the
original matrix if data are reliable

» If you capture the important sources, the reconstruction
should be very good (i.e., small residual variance)

> It is useful to attempt to upset a solution by inserting
another source and seeing If:
» the original solution is stable
» the new source accounts for any substantial variance

» Can do dipole localization (BESA) on an IC!



Dipole Fitting

ICA




You can try It!

'/




Implementations

> BESA can be used:

» In a strict hypothesis-testing manner by designating
sources a priori and testing the fit

» In an exploratory/optimizing manner by allowing the
program to iteratively minimize the residual variance
(between observed and reconstructed waveforms) by:
» moving dipoles
» changing the orientation of dipoles
> altering the time-by-activity function of the dipoles



BESA — Did it work?

» In the end, the adequacy of your solution will be judged by

» stability of your solution:.
» against insertion of additional dipoles
» across multiple subjects

» anatomical feasibility
» follow-up tests with patients with lesions
> Reviewer 2!



Are you nutz?

EEG IN THE MRI



Recording EEG In fMRI environments:

Oodles of Issues
» EEG can be bad for fMRI

» Wires and electrodes can be ferromagnetic = TROUBLE
» Wires and electrodes can be paramagnetic = less trouble

» MRI and fTMRI can be bad for EEG

» Gradient switching creates huge artifact for EEG

» Movement in Magnetic fields creates current in any
conductive medium (e.g. wires!)

» High frequency current can make wires HOT and RF is
127.68 MHz at 3T — that’s fast, and can create mega-hurts!
» Thus in-line 10K resistor



Special Caps

» Need conductive material
» That will not heat up

» That will not pose hazard in
strong magnetic field

» That includes inline resistor
to prevent any induced
current from reaching the
subject

» That includes Styrofoam
head at no charge




ence EEG Artifacts in fMRI?

1. Hydrogen protons,
positively charged particles

Transforming 3T productivity. in the hydrogen molecule's

/‘T“/ | \. MAGNETOM Skyra

nucleus, normally spin in
random directions

‘ \ AN > >
— ="
l : =
\Q_\ 2. Protons wobble in
o alignment with magnetic
| ——

fields of varying intensity;
frequency of wobble is
proportionate to strength
of individual magnetic field

3. A brief radio signal,
whose soundwave frequency
equals the frequency of
wobble of certain protons,
knocks those protons out
of alignment

4. When radio signal ceases,
protons snap back into
alighment with magnetic
field, emitting a radio signal
of their own, that announces
the presence of a specific
tissue



Whence EEG Artifacts in fMRI?

+ Faraday’s law of induction...

+ induced electromotive force is proportional to the time
derivative of the magnetic flux

+ Flux = summation of the magnetic field perpendicular to the
circuit plane over the area circuit

v e =do/dt
+ Can reflect: &
+ changes in the field (gradientf® B o bt ey are.

+ Changes in the circuit geome il "S- | L
field due to body motion T W

Coils of wire

Magnets. (I know they

e

Source: g =3
http://commonswikim edi A

trom-Synchron-Generator.jpg =~
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Whence EEG Artifacts in fMRI?

+ RF pulses
+ For 3T =127.6 MHz
+ Brain oscillations = 0.5-50 Hz
+ Amplifier frequency range = DC-3.0 KHz

+ Artifacts thus attenuated, but still range overwhelm the
EEG signal



Whence EEG Artifacts in fMRI?

+ Gradient Switching

+ Artifact approximates differential waveform
of the gradient pulse

+ Polarity and amplitude varies across channels
+ Frequency = 500-900 Hz

+ EEG dominated by

+ harmonics of slice repetition frequency
(=10-25 Hz)

+ convolved with harmonics of volume
repetition frequency (=0.2-2 Hz)

+ Artifacts in range from 1000-10,000 pV!



A. Timing of RFs and Gradients of EPIS Sequence '
; - ;

41260 us
2000;‘ \{}}b 2100 s '
..4 RF = radiofrequency wave;
e Gs = slice selection gradient
J: Gp = phase encoding gradient
RARARRRARAI Gr = readout gradient

. a = Fat suppression pulses (1-3-3-1 pulses)

/VVVW b = slice selection RF

¢, d, h = spoilers

e = slice selection gradient

f = dephasing and rephasing gradient

g = readout gradient

' = EEG artifact corresponding to letter

nmnnm!mmmmuwmlmnmmmmamml"u
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C. Imaging Artifact on EEG Record
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Average Artifact (across 1 TR)
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Artifact (across several TRs)
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Whence EEG Artifacts in fMRI?

v
v

v

v

+ Can reflect:
3

+ Changes in the circuit geometry or position relative to the
field due to body motion



MR By field Ejection phase
of cardiac cycle

+ Two types of movement:
+ Axial nodding

Woalation: ot ko + Expansion at lateral sites

flow in arch of aorta

xpansion_ _ _ _ _ + Motion of blood (flow) can lead to

“Hall effect”

+ Voltage difference on opposite sides
of a moving conductor through
which current is flowing, when
within a strong magnetic field

Blood flow

@
5
=

EEG-ECG single trial

+ Note field-strength dependent nature
of the artifact

on subjects’ back

Evoked ECG

g
8
2

, head rotation (pitch) and/or

axial blood flow momentum

Systole Diastole



EEG in Maghet (no scanning)
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100 ms Time [ms]

b -s0 0 50
)
Axial rotation - low frequency spatially-
. distributed effect, with polarity reversal
/
V - ~ - ~ | /
W a I //

Lateral balloon expansion - locally circumscribed artifact Debener et al., 2009



Ohmagawd... Help me in

REMOVING THOSE PESKY ARTIFACTS!



oval via moving
traction
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FASTR: FMRI Artifact Slice
Template Removal

+ Part of FMRIB Plug-in for EEGLAB

+ Upsample to at least 20K Hz

+ Align slices for slight jitter in timing

+ Moving Window approach with subtraction

+ PCA on artifact residuals form Optimum
Basis Set (OBS) to reduce residual
artifacts by 90%

+ Downsample to original rate
+ Sample Results............... :
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Alternatively ... BrainVision

+ Sync EEG clock to MR clock

+ No jitter in timing, no need to upsample
(recorded at 5000 hz)

+ Moving Window approach with subtraction
+ Downsample to original rate
+ Sample Results............... :
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oval via moving
traction (Allen et al. 1998)

250 pv

[25mv

(WP LUW LR O T W T W FL O T

1 1 1 1 1 1 1
1 1 1 I 1 1 Ll 1

1 sec

Fig.5 Schematic of the average artefact subtraction procedure. For each channel, a waveform tem-
plate is generated by averaging EEG epochs over adjacent cardiac cycles, with the time- locking
event being derived from the ECG. The template generation is combined with a moving average
procedure, and new templates are generated for each cardiac cycle. The procedure is repeated for
each EEG channel




There may be residual crud (RC)
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There may be residual crud
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Simultaneous EEG and RSTMRI (following
ICA!)



Multi-modal Imaging

+ Create RS-fMRI network with ACC seeds

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation



EEG Alpha Asymmetry is Negatively Correlated with IFG
Connectivity in Two ACC-seeded Resting State Networks

Spatially-enhanced EEG asymmetry (using CSD transform) at sites F8-F7 is related to
resting state connectivity between left inferior frontal gyrus and two ACC-seeded networks.

R L P A

Dorsal ACC-seeded Network
Center of the depicted cluster is (x,y,z) -46, 28, -4 MNI
coordinates.

Largest correlation

Subgenual ACC-seeded Network
Center of the depicted cluster is (x,y,z) -54, 28, -4 MNI

coordinates.
Largest correlati

.

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation



EEG-fMRI Synopsis

+ Less relative left frontal activity (indexed by
EEG) is related to increased connectivity of
left IFG to two ACC-seeded RS networks

+ Consistent with:

+ Hyper-connectivity in RSfMRI emotion networks
in MDD (e.g., Grecius et al., 2007; Sheline et al., 2010)

+ Frontal EEG asymmetry findings of less relative
left frontal activity in risk for MDD.

+ Alpha power may regulate network
connectivity

+ Note: Between vs Within Subjects



BETWEEN-SUBJECTS’ DATA DOES NOT
NECESSARILY SUPPORT A WITHIN-
SUBJECTS’ INTERPRETATION



Within Subjects’ Moderation
of RSfMRI Connectivity

+ Calculate F8-F7 alpha asymmetry for each
TR

+ EEG leads TR by 4.096 seconds
+ Median split into high (left) and low (right)

+ Entered as moderator in PPl approach (cf.
Friston et al., 1997)

+ Tests whether strength of connectivity to
seed region varies as a function of the
moderator

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation



Within Subjects’ Moderation
of RSfMRI Connectivity

Dorsal ACC Seed Greater Connectivity with
Less Left Frontal Alpha or
Greater Left Frontal Alpha

Allen, Hewig, Miltner, Hecht, & Schnyer, in preparation



Within (red) and Between (blue)
Within-subject effects more extensive




Cognitive Control over Emotion

+ IFG has a key role in mediating the success
of cognitive control over emotional stimuli



Cognitive Control over Emotion

v Left IFG: + Right IFG:

Language and Attentional control
self-referential + behavioral inhibition

: + suppression of
rocessin

P S unwanted thoughts

+ attention shifting

+ efforts to reappraise
emotional stimuli
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Cognitive Control over Emotion

+ Left IFG:

+ Right IFG:

Language and Attentional control
self-referential d*{ + behavioral inhibition
: e + suppression of
rocessin <
P S > unwanted thoughts
fe N > + attention shifting
E 5 + efforts to reappraise
e 3| "y emotional stimuli
+ Working .
+ Hypercoknec IF 3 etworks:
ruminatiof _ A
+ Hypoconnested-right IFG—difficulty/disengaging from
emotion >






Psychophysiology -- Synopsis

» Psychophysiology Is inherently
Interdisciplinary, and systemic

» Principles learned here can apply to a wide
range of physiological signals
» Recording
» Processing
» Interpretation



Psychophysiology -- Synopsis

» Ultimately we obtain correlates of behavior and
experience

» Psychophysiological Correlates are not privileged; they are
no better, no worse, than any other correlate of behavior
and experience

» The utility of these correlates — like any correlates in
science — hinges upon:

» good experimental design

» strong theoretically driven hypothesis testing

» the development of a nomological net, a set of inter-
relationships among tangible measures and constructs that
place the findings in a larger theoretical context, and lend
construct validity to the measures and findings



