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Model Inference

Sample covariance matrices are obtained for repeated
trials over 60 EEG scalp electrodes by computing the
outer product of the channel by time-point data matrix of
complex-valued phases (obtained by wavelet
transformation).

• The arithmetic mean of these matrices over
time-points is equivalent to the mean ICPS for each
pairwise combination of oscillators.

• Sample covariance matrices lie in the parameter
space of the model, which is given by the manifold of
symmetric positive-definite matrices (Fig. 4).

• The geometric mean is the center of mass of the
points in the model parameter space.

An iterative algorithm is employed on the SPD manifold
to compute the geometric mean of a set of positive-
definite covariance matrices.

• Minimizes the sum of squared residuals, given by the
lengths of the geodesics between the group means
and each labeled sample.

Conclusions

Introduction

Phase-synchronization is a potential mechanism to

dynamically modulate functional connectivity between

brain regions.

• Inter-channel Phase Synchrony (ICPS), a bivariate

measure of phase-synchronization, has been used

to reveal functional relationships.

• However, ICPS has several limitations:

• Spurious correlations due to the third-variable

problem.

• Low statistical power due to multiple

comparisons.

The current study overcomes these limitations with a

new multivariate phase covariance analysis (MPCA)

approach to infer network connectivity and mean

phase differences between electrodes in EEG time-

series. To validate the new method, we:

• Examine theta phase connectivity following

correct and incorrect responses on a Flanker

task, concomitant with the Error-Related

Negativity (ERN).

• Implement an omnibus test to reveal statistically

significant differences in coupling parameters

between conditions.

Model

The network state-space can be represented by a N-

dimensional cube (Fig. 1).

•Each dimension varies from 0 to 2𝜋, corresponding to

the periodic state-space for each oscillator.

Figure 2: Example topology for a two-node network.

• Trajectories are restricted to the surface of an
N-torus (Fig. 2)1.

• Attractor states of the network are described by a   
Hermitian-symmetric positive-definite (SPD)            
covariance matrix.

Figure 42: Parameter space

for Hermitian SPD covariance

matrices. Geodesics are

minimal curves between

points in the manifold.

• A diffeomorphism exists between the geodesic

connecting two points on the manifold, and a vector in

the tangent bundle at p (Fig. 4).

• Residuals are projected into the tangent space at

the current estimate and averaged to obtain a

mean tangent vector.

• The point p and the mean tangent vector specify

an update, with guaranteed convergence within

the domain of the diffeomorphism3.

Results

Figure 1: Relationship between network

connectivity, graph, and topology.

Figure 3: Example trajectories in a three-node

network with varying coupling parameters.

Significance testing between conditions is

accomplished by geodesic regression with permutation

testing (Fig. 6).

• Two parameter model: initial point on the manifold

(one of the group means), and a tangent vector

specifying the geodesic between the group means.

• Null hypothesis: the distance between the group

means for is not significantly greater than zero.

Figure 5: Functional connectivity in a single subject. (Top)

MPCA was used to compute the mean connectivity for

Error and Correct trials [50, -150] ms following a response,

relative to the baseline period [-300, -200] ms. (Bottom)

Mean ICPS was computed for comparison. Baseline

corrected ICPS shows spurious results, as expected.

• Simply subtracting baseline functional connectivity

matrices produces spurious results.

• Baseline-corrected MPCA provides a meaningful

representation of the difference between

conditions. Connectivity following error and correct

trials resulted in increased connectivity relative to

baseline.

• However, baseline-corrected connectivity did not

differ between correct and incorrect responses.

Future work

• Implement a geodesic regression analysis for a

curve parameterized by time.

• How does the modulation in functional connectivity

vary over time?

• Implement a multi-level model to analyze the

difference between error and correct trials within and

between participants over time.
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Minimizing the network energy (U) maximizines the log-

posterior of the model:
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• Where the elements of X indicate the phase of each 

oscillator and K is the SPD connectivity matrix.

• Gradient descent on the network energy generates 

trajectories in the state-space (Fig.3).

Figure 6: Expected 𝑅2 under the null hypothesis. The

distribution of 𝑅2 is obtained by shuffling the data with

respect to the condition labels. Error > Baseline, z =

3.611, p < 0.001. Correct > Baseline z = 4.331, p <

0.001. Error > Correct, ns, z=0.106, p = 0.46
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